cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269449 The first of 33 consecutive positive integers the sum of the squares of which is a square.

This page as a plain text file.
%I A269449 #24 Oct 18 2020 16:54:41
%S A269449 7,27,60,181,227,612,1085,1985,3492,9047,11161,28860,50607,91987,
%T A269449 161276,416685,513883,1327652,2327541,4230121,7415908,19159167,
%U A269449 23628161,61043836,107016983,194494283,340971196,880905701,1086382227,2806689508,4920454381,8942507601
%N A269449 The first of 33 consecutive positive integers the sum of the squares of which is a square.
%C A269449 Positive integers y in the solutions to 2*x^2-66*y^2-2112*y-22880 = 0.
%C A269449 All sequences of this type (i.e. sequences with fixed offset k, and a discernible pattern: k=0...32 for this sequence, k=0..1 for A001652, k=0...10 for A106521) can be extended using a formula such as x(n) = a*x(n-p) - x(n-2p) + b, where a and b are various constants, and p is the period of the series. Alternatively 'p' can be considered the number of concurrent series. - _Daniel Mondot_, Aug 08 2016
%C A269449 Numbers x such that 11440+33*x*(32+x)is a square. - _Harvey P. Dale_, Oct 18 2020
%H A269449 Colin Barker, <a href="/A269449/b269449.txt">Table of n, a(n) for n = 1..1000</a>
%H A269449 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,46,-46,0,0,0,0,-1,1).
%F A269449 G.f.: x*(7 +20*x +33*x^2 +121*x^3 +46*x^4 +385*x^5 +151*x^6 -20*x^7 -11*x^8 -11*x^9 -2*x^10 -11*x^11 -4*x^12) / ((1 -x)*(1 -46*x^6 +x^12)).
%F A269449 a(1)=7, a(2)=27, a(3)=60, a(4)=181, a(5)=227, a(6)=612, a(7)=1085, a(8)=1985, a(9)=3492, a(10)=9047, a(11)=11161, a(12)=28860, a(n)=46*a(n-6)-a(n-12)+704. - _Daniel Mondot_, Aug 08 2016
%e A269449 7 is in the sequence because sum(k=7, 39, k^2) = 20449 = 143^2.
%t A269449 Rest@ CoefficientList[Series[x (7 + 20 x + 33 x^2 + 121 x^3 + 46 x^4 + 385 x^5 + 151 x^6 - 20 x^7 - 11 x^8 - 11 x^9 - 2 x^10 - 11 x^11 - 4 x^12)/((1 - x) (1 - 46 x^6 + x^12)), {x, 0, 32}], x] (* _Michael De Vlieger_, Aug 08 2016 *)
%t A269449 LinearRecurrence[{1,0,0,0,0,46,-46,0,0,0,0,-1,1},{7,27,60,181,227,612,1085,1985,3492,9047,11161,28860,50607},50] (* _Harvey P. Dale_, Oct 18 2020 *)
%o A269449 (PARI) Vec(x*(7 +20*x +33*x^2 +121*x^3 +46*x^4 +385*x^5 +151*x^6 -20*x^7 -11*x^8 -11*x^9 -2*x^10 -11*x^11 -4*x^12) / ((1 -x)*(1 -46*x^6 +x^12)) + O(x^40))
%Y A269449 Cf. A001032, A001652, A094196, A106521, A257767, A269447, A269448, A269451.
%K A269449 nonn,easy
%O A269449 1,1
%A A269449 _Colin Barker_, Feb 27 2016