This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269454 #54 Sep 08 2022 08:46:15 %S A269454 5,11,59,83,107,179,227,347,467,563,587,1019,1187,1283,1307,1523,1619, %T A269454 1907,2027,2099,2459,2579,2819,2963,3203,3467,3779,3803,3947,4139, %U A269454 4259,4283,4547,4787,5099,5387,5483,5507,5939,6659,6779,6827,6899,7187,7523 %N A269454 Safe primes that are not congruent to -1 mod 8. %C A269454 For safe primes see A005385. %C A269454 Conjecture: If p and q are two distinct safe primes not congruent to -1 mod 8 then the order of 2 mod p*q is phi(p*q)/2. For phi see A000010. %C A269454 Note: The order of 2 mod p*q is the smallest positive integer k such that 2^k = 1 mod p*q. See Rosen's definition of the order of an integer on p.334. Also, k is smaller than or equal to phi(p*q)/2 for all products of distinct odd primes p and q. See Cohen's Prop. 1.4.2 on p. 25. %C A269454 2^(phi(p*q)/2) == 1 (mod p*q) for all distinct odd primes p and q. See Nagell's corollary to Theorem 64, p. 106, with a = 2 and n = p*q. - _Wolfdieter Lang_, Mar 31 2016 %D A269454 Henri Cohen, Graduate Texts In Mathematics: A Course in Computational Algebraic Number Theory, Springer, 2000, p. 25 %D A269454 Trygve Nagell, Introduction to Number Theory, Chelsea, 1964, p. 106. %D A269454 Kenneth H. Rosen, Elementary Number Theory And Its Applications, AT&T Laboratories, 2005, p. 334 %H A269454 Amiram Eldar, <a href="/A269454/b269454.txt">Table of n, a(n) for n = 1..10000</a> %F A269454 A005385 without its intersection with A007522. %t A269454 Select[Prime@ Range@ 1000, And[PrimeQ[(# - 1)/2], MemberQ[Range[0, 6], Mod[#, 8]]] &] (* _Michael De Vlieger_, Feb 28 2016 *) %o A269454 (Magma) [ p: p in PrimesUpTo(8000) | IsPrime((p-1) div 2) and not p mod 8 eq 7]; // _Vincenzo Librandi_, Feb 28 2016 %o A269454 (PARI) lista(nn) = {forprime(p=3, nn, if (((p % 8) != 7) && isprime((p-1)/2), print1(p, ", ")););} \\ _Michel Marcus_, Mar 24 2016 %Y A269454 Cf. A005385, A007522. %K A269454 nonn %O A269454 1,1 %A A269454 _Marina Ibrishimova_, Feb 27 2016 %E A269454 More terms from _Vincenzo Librandi_, Feb 28 2016