cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269459 Numbers that are equal to the sum of the number of divisors of their first k arithmetic derivatives, for some k.

This page as a plain text file.
%I A269459 #23 Jun 23 2023 03:47:19
%S A269459 15,16,45,60,69,75,112,116,236,296,319,452,576,586,843,1047,1184,1704,
%T A269459 1902,2852,2966,3068,3122,4708,4805,5684,6150,6712,7126,10920,10950,
%U A269459 13107,16700,18698,27828,29309,31142,31448,31764,43152,48584,51609,53822,62472,63008
%N A269459 Numbers that are equal to the sum of the number of divisors of their first k arithmetic derivatives, for some k.
%e A269459 The first eight arithmetic derivatives of 75 are 55, 16, 32, 80, 176, 368, 752, 1520 and d(55) + d(16) + d(32) + d(80) + d(176) + d(368) + d(752) + d(1520) = 4 + 5 + 6 + 10 + 10 + 10 + 10 + 20 = 75.
%p A269459 with(numtheory): P:=proc(q) local a,b,k,n,p; for n from 1 to q do a:=0; k:=1; b:=n;
%p A269459 while a<n do b:=b*add(op(2,p)/op(1,p),p=ifactors(b)[2]); if b>0 then a:=a+tau(b); else break; fi; od;
%p A269459 if n=a then print(n); fi; od; end: P(10^6);
%o A269459 (PARI) ad(n) = if (n<1, 0, my(f = factor(n)); n*sum(k=1, #f~, f[k,2]/f[k,1]));
%o A269459 isok(n) = {ss = 0; kn = n; while (ss < n, der = ad(kn); if (der == 0, break); ss += numdiv(der); kn = der); ss == n;} \\ _Michel Marcus_, Apr 08 2016
%Y A269459 Cf. A000005, A003415, A270389, A270713.
%K A269459 nonn
%O A269459 1,1
%A A269459 _Paolo P. Lava_, Apr 06 2016
%E A269459 a(35)-a(45) from _Amiram Eldar_, Jun 23 2023