cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A269678 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by other than plus or minus one modulo k+1.

Original entry on oeis.org

2, 3, 4, 4, 9, 6, 5, 16, 24, 10, 6, 25, 60, 66, 14, 7, 36, 120, 224, 174, 22, 8, 49, 210, 570, 820, 462, 30, 9, 64, 336, 1212, 2670, 2976, 1206, 46, 10, 81, 504, 2282, 6918, 12390, 10700, 3150, 62, 11, 100, 720, 3936, 15358, 39156, 57030, 38224, 8166, 94, 12, 121
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
.10....66....224.....570.....1212......2282......3936.......6354.......9740
.14...174....820....2670.....6918.....15358.....30504......55710......95290
.22...462...2976...12390....39156....102606....234912.....485766.....927780
.30..1206..10700...57030...220050....681254...1799256....4215510....8995310
.46..3150..38224..260790..1229292...4499278..13716480...36430614...86891980
.62..8166.135780.1185990..6832518..29579382.104139336..313684470..836599530
.94.21150.480176.5368470.37810116.193688894.787814400.2692218006.8031245540

Examples

			Some solutions for n=6 k=4
..0. .1. .4. .0. .2. .4. .0. .4. .4. .4. .4. .4. .3. .0. .4. .4
..2. .3. .2. .3. .3. .1. .0. .2. .4. .2. .0. .3. .3. .3. .0. .2
..0. .2. .4. .2. .4. .3. .4. .1. .0. .3. .3. .2. .0. .0. .3. .3
..3. .3. .1. .1. .1. .4. .1. .2. .2. .3. .2. .1. .4. .4. .3. .4
..0. .3. .3. .0. .4. .2. .0. .3. .0. .2. .1. .0. .3. .4. .4. .1
..1. .2. .4. .2. .4. .2. .4. .1. .4. .0. .2. .1. .4. .3. .2. .3
		

Crossrefs

Column 1 is A027383.
Column 2 is A269461.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A007531(n+2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) +2*a(n-2) -8*a(n-3)
k=3: a(n) = 5*a(n-1) -a(n-2) -15*a(n-3)
k=4: a(n) = 7*a(n-1) -6*a(n-2) -24*a(n-3)
k=5: a(n) = 9*a(n-1) -13*a(n-2) -35*a(n-3)
k=6: a(n) = 11*a(n-1) -22*a(n-2) -48*a(n-3)
k=7: a(n) = 13*a(n-1) -33*a(n-2) -63*a(n-3)
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 3*n^2 + 2*n + 2 for n>1
n=5: a(n) = n^5 + 5*n^4 + 4*n^3 + 6*n^2 + 4*n - 2 for n>1
n=6: a(n) = n^6 + 6*n^5 + 5*n^4 + 12*n^3 + 6*n^2 + 6 for n>1
n=7: a(n) = n^7 + 7*n^6 + 6*n^5 + 20*n^4 + 8*n^3 + 10*n^2 + 12*n - 10 for n>1
Showing 1-1 of 1 results.