cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269467 T(n,k)=Number of length-n 0..k arrays with no repeated value equal to the previous repeated value.

Original entry on oeis.org

2, 3, 4, 4, 9, 6, 5, 16, 24, 10, 6, 25, 60, 66, 14, 7, 36, 120, 228, 174, 22, 8, 49, 210, 580, 852, 462, 30, 9, 64, 336, 1230, 2780, 3180, 1206, 46, 10, 81, 504, 2310, 7170, 13300, 11796, 3150, 62, 11, 100, 720, 3976, 15834, 41730, 63420, 43644, 8166, 94, 12, 121
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
.10....66....228.....580.....1230......2310......3976.......6408.......9810
.14...174....852....2780.....7170.....15834.....31304......56952......97110
.22...462...3180...13300....41730....108402....246232.....505800.....960750
.30..1206..11796...63420...242370....741090...1934856....4488696....9499590
.46..3150..43644..301780..1405530...5060706..15190840...39808584...93880710
.62..8166.160980.1433180..8139570..34523202.119174216..352838520..927352710
.94.21150.592572.6795700.47082330.235304034.934305400.3125681352.9156504150
The conjectures regarding the recursions for column k are correct (see links) - Sela Fried, Oct 29 2024.

Examples

			Some solutions for n=6 k=4
..2. .0. .3. .1. .1. .1. .2. .0. .1. .0. .3. .0. .3. .2. .4. .1
..4. .3. .1. .1. .2. .0. .0. .2. .0. .2. .3. .1. .4. .0. .3. .4
..3. .2. .0. .0. .0. .0. .2. .2. .1. .0. .4. .2. .4. .0. .4. .3
..3. .0. .4. .2. .1. .1. .2. .1. .3. .4. .1. .4. .2. .4. .4. .1
..1. .3. .4. .4. .0. .4. .4. .3. .4. .1. .4. .1. .2. .2. .0. .0
..0. .1. .3. .3. .4. .3. .2. .4. .1. .3. .2. .2. .1. .4. .1. .2
		

Crossrefs

Column 1 is A027383.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A007531(n+2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) +2*a(n-2) -8*a(n-3)
k=3: a(n) = 5*a(n-1) -18*a(n-3)
k=4: a(n) = 7*a(n-1) -4*a(n-2) -32*a(n-3)
k=5: a(n) = 9*a(n-1) -10*a(n-2) -50*a(n-3)
k=6: a(n) = 11*a(n-1) -18*a(n-2) -72*a(n-3)
k=7: a(n) = 13*a(n-1) -28*a(n-2) -98*a(n-3)
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 4*n^2 + n
n=5: a(n) = n^5 + 5*n^4 + 7*n^3 + 2*n^2 - n
n=6: a(n) = n^6 + 6*n^5 + 11*n^4 + 4*n^3 - n^2 + n
n=7: a(n) = n^7 + 7*n^6 + 16*n^5 + 8*n^4 - n^3 - n