A269472 Decimal expansion of Product_{p prime} (1-(p^2+2)/(2(p^2+1)(p+1))) / sqrt(1-1/p), a constant related to the asymptotic average number of squares modulo n.
1, 2, 5, 6, 9, 1, 3, 6, 1, 0, 2, 1, 0, 1, 8, 8, 5, 9, 5, 9, 4, 9, 2, 1, 1, 5, 7, 6, 9, 4, 6, 8, 6, 0, 8, 9, 4, 9, 4, 0, 4, 5, 9, 8, 8, 6, 8, 0, 7, 5, 0, 8, 7, 6, 7, 7, 9, 8, 5, 7, 1, 8, 1, 9, 3, 4, 7, 5, 1, 8, 2, 3, 8, 4, 5, 7, 4, 5, 4, 1, 4, 8, 7, 5, 5, 3, 9, 7, 5, 4, 8, 9, 7, 8, 6, 4, 9, 1, 1, 5, 7, 6, 4, 5, 0, 9, 9, 6
Offset: 1
Examples
1.2569136102101885959492115769468608949404598868075...
Links
- Steven R. Finch and Pascal Sebah, Squares and Cubes Modulo n, arXiv:math/0604465 [math.NT], 2006-2016.
Programs
-
Mathematica
digits = 104; m0 = 100; Clear[s]; s[m_] := s[m] = Sum[(1 + 2*(-1)^n - 4*(-1)^n*ChebyshevT[n, 1/4] + 4*Switch[Mod[n, 4], 2, -1, 3, 0, 0, 1, 1, 0])/(2*n) PrimeZetaP[n], {n, 2, m}] // N[#, digits]& // Exp; s[m0]; s[m = 2 m0]; While[RealDigits[s[m], 10, digits] != RealDigits[s[m/2], 10, digits], m = 2 m; Print[m]]; RealDigits[s[m]][[1]] (* Second program: *) $MaxExtraPrecision = 1000; Clear[f]; f[p_] := (1 - (p^2 + 2)/(2 (p^2 + 1) (p + 1)))/ Sqrt[1 - 1/p]; Do[c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2] * Exp[N[Sum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 112]]], {m, 100, 1000, 100}] (* Vaclav Kotesovec, Jun 19 2020 *)
-
PARI
sqrt(prodeulerrat((1-(p^2+2)/(2*(p^2+1)*(p+1)))^2/(1-1/p))) \\ Amiram Eldar, May 29 2021
Extensions
Formula in name and last digit corrected by Vaclav Kotesovec, Jun 19 2020