cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269481 Continued fraction expansion of the Dirichlet eta function at 4.

This page as a plain text file.
%I A269481 #6 Feb 16 2025 08:33:30
%S A269481 0,1,17,1,7,3,3,1,7,3,6,1,1,7,1,11,1,11,5,1,2,2,2,7,1,14,6,5,1,1,1,1,
%T A269481 10,9,1,1,5,2,2,3,2,5,2,4,1,46,312,3,3,1,15,1,2,5,2,1,1,27,1,2,1,2,11,
%U A269481 5,2,1,482,3,2,4,2,2,3,1,3,1,2,1,1,13,1,13,1,1,67,149,7,2,2,18,1,2,1,1,1,51,1,7,1,8
%N A269481 Continued fraction expansion of the Dirichlet eta function at 4.
%C A269481 Continued fraction of Sum_{k>=1} (-1)^(k - 1)/k^4 = (7*Pi^4)/720 = 0.9470328294972459175765...
%H A269481 OEIS Wiki, <a href="https://oeis.org/wiki/Zeta_functions#Euler.27s_alternating_zeta_function">Euler's alternating zeta function</a>
%H A269481 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>
%H A269481 Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_eta_function">Dirichlet Eta Function</a>
%H A269481 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%e A269481 1/1^4 - 1/2^4 + 1/3^4 - 1/4^4 + 1/5^4 - 1/6^4 +... = 1/(1 + 1/(17 + 1/(1 + 1/(7 + 1/(3 + 1/(3 + 1/...)))))).
%t A269481 ContinuedFraction[(7 Pi^4)/720, 100]
%Y A269481 Cf. A013680, A267315.
%K A269481 nonn,cofr
%O A269481 0,3
%A A269481 _Ilya Gutkovskiy_, Feb 27 2016