cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269482 Continued fraction expansion of the Dirichlet eta function at 5.

This page as a plain text file.
%I A269482 #8 Feb 16 2025 08:33:30
%S A269482 0,1,34,1,6,1,1,3,1,2,1,1,1,2,1,2,1,1,2,2,2,35,3,1,5,4,1,2,2,1,4,1,1,
%T A269482 1,2,10,2,1,6,9,23,1,5,1,1,1,1,1,2,1,3,4,1,2,1,1,2,2,1,1,5,4,7,1,1,1,
%U A269482 1,2,2,1,4,1,1,2,8,3,2,1,3,1,5,356,2,57,6,1,6,1,1,31,1,5,1,1,477,1,9,7,3,4
%N A269482 Continued fraction expansion of the Dirichlet eta function at 5.
%C A269482 Continued fraction of Sum_{k>=1} (-1)^(k - 1)/k^5 = (15*zeta(5))/16 = 0.9721197704469093...
%H A269482 OEIS Wiki, <a href="https://oeis.org/wiki/Zeta_functions#Euler.27s_alternating_zeta_function">Euler's alternating zeta function</a>
%H A269482 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>
%H A269482 Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_eta_function">Dirichlet Eta Function</a>
%H A269482 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%e A269482 1/1^5 - 1/2^5 + 1/3^5 - 1/4^5 + 1/5^5 - 1/6^5 +... = 1/(1 + 1/(34 + 1/(1 + 1/(6 + 1/(1 + 1/(1 + 1/...)))))).
%t A269482 ContinuedFraction[(15 Zeta[5])/16, 100]
%Y A269482 Cf. A013681, A267316.
%K A269482 nonn,cofr
%O A269482 0,3
%A A269482 _Ilya Gutkovskiy_, Feb 27 2016