cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A269532 Number of length-n 0..3 arrays with no repeated value differing from the previous repeated value by other than one.

Original entry on oeis.org

4, 16, 60, 222, 804, 2878, 10192, 35812, 125012, 434110, 1500912, 5170626, 17758812, 60837880, 207965356, 709583398, 2417278172, 8223508510, 27943213944, 94853465148, 321696510276, 1090199408374, 3692112980824, 12496559933794
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2016

Keywords

Comments

Column 3 of A269537.

Examples

			Some solutions for n=9:
..2. .1. .0. .0. .3. .0. .1. .2. .1. .2. .0. .1. .1. .0. .0. .1
..1. .3. .3. .0. .0. .2. .2. .2. .0. .0. .3. .2. .3. .3. .2. .2
..0. .0. .2. .1. .3. .3. .0. .0. .3. .1. .0. .0. .1. .3. .0. .1
..2. .3. .2. .1. .2. .2. .1. .3. .1. .2. .0. .2. .0. .0. .3. .3
..2. .0. .3. .0. .0. .0. .0. .2. .0. .3. .2. .3. .3. .3. .2. .3
..3. .2. .0. .0. .3. .1. .0. .0. .2. .0. .3. .1. .3. .0. .0. .0
..1. .1. .3. .2. .2. .0. .3. .3. .2. .3. .2. .2. .1. .2. .1. .1
..1. .2. .0. .3. .3. .0. .1. .2. .0. .2. .1. .2. .2. .1. .2. .0
..3. .3. .3. .0. .0. .1. .3. .3. .3. .2. .2. .0. .2. .2. .1. .2
		

Crossrefs

Cf. A269537.

Formula

Empirical: a(n) = 7*a(n-1) - 9*a(n-2) - 23*a(n-3) + 31*a(n-4) + 33*a(n-5).
Empirical g.f.: 2*x*(2 - 6*x - 8*x^2 + 19*x^3 + 17*x^4) / ((1 - 3*x)*(1 - 4*x - 3*x^2 + 14*x^3 + 11*x^4)). - Colin Barker, Mar 21 2018

A269530 Number of length-n 0..n arrays with no repeated value differing from the previous repeated value by other than one.

Original entry on oeis.org

2, 9, 60, 568, 6890, 102202, 1792788, 36313762, 834223586, 21432797300, 608957461160, 18959064989614, 641864430972850, 23477543114153020, 922643768971802072, 38770277525975117782, 1734684393525837427074
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2016

Keywords

Comments

Diagonal of A269537.

Examples

			Some solutions for n=5
..1. .2. .1. .1. .5. .4. .3. .2. .4. .1. .5. .5. .3. .3. .3. .4
..0. .2. .5. .4. .2. .0. .2. .4. .0. .4. .2. .0. .1. .2. .2. .3
..0. .3. .4. .2. .0. .2. .0. .3. .2. .0. .3. .1. .0. .5. .3. .2
..3. .5. .4. .1. .5. .4. .1. .1. .2. .3. .2. .5. .5. .1. .5. .1
..1. .1. .2. .0. .1. .2. .2. .4. .1. .3. .0. .2. .5. .5. .3. .4
		

Crossrefs

Cf. A269537.

A269531 Number of length-n 0..2 arrays with no repeated value differing from the previous repeated value by other than one.

Original entry on oeis.org

3, 9, 24, 64, 164, 418, 1048, 2614, 6468, 15942, 39120, 95734, 233660, 569230, 1384408, 3362686, 8158932, 19778982, 47913504, 115999462, 280698860, 678970558, 1641785704, 3968834446, 9592037508, 23178077334, 55998523824, 135275792374
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2016

Keywords

Examples

			Some solutions for n=9:
..1. .0. .0. .0. .1. .0. .2. .0. .1. .0. .0. .2. .0. .0. .0. .1
..0. .1. .2. .2. .1. .2. .1. .2. .0. .1. .0. .0. .1. .2. .2. .1
..1. .2. .0. .0. .0. .0. .2. .0. .1. .0. .2. .0. .2. .0. .0. .2
..1. .0. .2. .2. .2. .2. .0. .1. .0. .1. .1. .1. .1. .0. .1. .1
..0. .0. .2. .1. .1. .2. .0. .0. .0. .0. .1. .2. .0. .2. .1. .0
..0. .1. .0. .2. .2. .1. .2. .1. .2. .2. .0. .1. .1. .0. .0. .2
..2. .1. .2. .1. .0. .2. .1. .0. .1. .0. .2. .0. .2. .2. .1. .1
..1. .0. .1. .0. .2. .1. .1. .1. .0. .1. .2. .2. .0. .0. .0. .0
..0. .1. .0. .1. .1. .2. .0. .0. .1. .2. .0. .1. .1. .1. .1. .1
		

Crossrefs

Column 2 of A269537.

Formula

Empirical: a(n) = 4*a(n-1) - a(n-2) - 10*a(n-3) + 6*a(n-4) + 4*a(n-5).
Empirical g.f.: x*(3 - 3*x - 9*x^2 + 7*x^3 + 4*x^4) / ((1 - 2*x)*(1 - 2*x - x^2)*(1 - 2*x^2)). - Colin Barker, Jan 23 2019

A269533 Number of length-n 0..4 arrays with no repeated value differing from the previous repeated value by other than one.

Original entry on oeis.org

5, 25, 120, 568, 2648, 12214, 55836, 253418, 1143256, 5131592, 22934652, 102124670, 453300160, 2006497722, 8860136576, 39040820448, 171705037456, 753921273870, 3305432501828, 14473039186090, 63296720868120, 276532411704016
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2016

Keywords

Examples

			Some solutions for n=7:
..1. .2. .1. .4. .4. .3. .3. .3. .0. .4. .4. .1. .4. .1. .4. .3
..3. .0. .1. .1. .0. .3. .2. .2. .4. .4. .3. .3. .0. .0. .3. .1
..1. .4. .0. .3. .3. .4. .3. .4. .1. .2. .1. .2. .0. .3. .1. .0
..3. .3. .4. .1. .4. .0. .2. .4. .4. .3. .4. .4. .4. .0. .0. .3
..1. .0. .2. .2. .2. .4. .3. .0. .0. .0. .1. .3. .0. .2. .4. .0
..2. .0. .0. .1. .4. .3. .1. .3. .0. .4. .3. .0. .4. .3. .0. .1
..3. .4. .0. .0. .2. .4. .0. .1. .4. .1. .1. .3. .1. .1. .4. .4
		

Crossrefs

Column 4 of A269537.

Formula

Empirical: a(n) = 14*a(n-1) - 65*a(n-2) + 80*a(n-3) + 163*a(n-4) - 280*a(n-5) - 208*a(n-6).
Empirical g.f.: x*(5 - 45*x + 95*x^2 + 113*x^3 - 319*x^4 - 213*x^5) / ((1 - 4*x)^2*(1 - 6*x + x^2 + 24*x^3 + 13*x^4)). - Colin Barker, Jan 23 2019

A269534 Number of length-n 0..5 arrays with no repeated value differing from the previous repeated value by other than one.

Original entry on oeis.org

6, 36, 210, 1210, 6890, 38878, 217714, 1211476, 6705102, 36939610, 202696070, 1108372980, 6042240154, 32850033316, 178168192702, 964256946776, 5208585411106, 28086302736278, 151213240334794, 812960203889834
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2016

Keywords

Examples

			Some solutions for n=6:
..4. .3. .0. .3. .1. .5. .0. .4. .2. .3. .1. .3. .1. .1. .3. .0
..1. .3. .4. .2. .0. .5. .3. .0. .4. .5. .5. .4. .1. .5. .4. .4
..2. .1. .2. .3. .5. .3. .2. .4. .4. .1. .3. .0. .0. .5. .1. .0
..5. .0. .2. .4. .1. .1. .5. .4. .0. .3. .5. .5. .2. .2. .1. .1
..3. .3. .1. .2. .4. .2. .0. .5. .5. .4. .4. .3. .0. .3. .2. .1
..0. .2. .2. .2. .3. .5. .2. .1. .3. .0. .4. .4. .1. .0. .5. .5
		

Crossrefs

Column 5 of A269537.

Formula

Empirical: a(n) = 17*a(n-1) - 92*a(n-2) + 96*a(n-3) + 493*a(n-4) - 533*a(n-5) - 1521*a(n-6) - 695*a(n-7).
Empirical g.f.: 2*x*(3 - 33*x + 75*x^2 + 188*x^3 - 387*x^4 - 821*x^5 - 354*x^6) / ((1 - 5*x)*(1 - 12*x + 32*x^2 + 64*x^3 - 173*x^4 - 332*x^5 - 139*x^6)). - Colin Barker, Jan 23 2019

A269535 Number of length-n 0..6 arrays with no repeated value differing from the previous repeated value by other than one.

Original entry on oeis.org

7, 49, 336, 2280, 15324, 102202, 677200, 4462414, 29265308, 191134204, 1243794600, 8068058218, 52186113316, 336696234188, 2167362918200, 13922979926042, 89273834257404, 571453869667592, 3652311182519800, 23309932135990218
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2016

Keywords

Examples

			Some solutions for n=6:
..6. .5. .6. .4. .0. .1. .5. .4. .1. .3. .2. .1. .3. .5. .6. .3
..2. .2. .0. .3. .5. .3. .2. .6. .2. .6. .4. .0. .6. .1. .1. .5
..1. .6. .4. .5. .0. .0. .3. .3. .1. .2. .6. .2. .3. .6. .2. .6
..6. .3. .0. .0. .1. .5. .1. .0. .2. .4. .0. .3. .1. .0. .2. .6
..5. .0. .3. .3. .5. .1. .3. .1. .3. .1. .0. .2. .1. .6. .4. .0
..1. .3. .4. .6. .0. .4. .1. .3. .5. .6. .2. .5. .0. .1. .2. .6
		

Crossrefs

Column 6 of A269537.

Formula

Empirical: a(n) = 26*a(n-1) - 246*a(n-2) + 896*a(n-3) + 123*a(n-4) - 6658*a(n-5) + 796*a(n-6) + 22824*a(n-7) + 23326*a(n-8) + 6924*a(n-9).
Empirical g.f.: x*(7 - 133*x + 784*x^2 - 674*x^3 - 6065*x^4 + 4181*x^5 + 26114*x^6 + 24478*x^7 + 7026*x^8) / ((1 - 6*x)*(1 - 20*x + 126*x^2 - 140*x^3 - 963*x^4 + 880*x^5 + 4484*x^6 + 4080*x^7 + 1154*x^8)). - Colin Barker, Jan 23 2019

A269536 Number of length-n 0..7 arrays with no repeated value differing from the previous repeated value by other than one.

Original entry on oeis.org

8, 64, 504, 3934, 30464, 234358, 1792788, 13648124, 103462888, 781425950, 5882591244, 44155349024, 330570580264, 2469019630228, 18401868960784, 136886638563766, 1016473079300584, 7535834884502158, 55785961230032092
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2016

Keywords

Comments

Column 7 of A269537.

Examples

			Some solutions for n=5
..1. .6. .7. .0. .4. .5. .3. .4. .4. .0. .5. .0. .3. .2. .0. .3
..4. .5. .4. .0. .4. .0. .7. .5. .0. .5. .1. .2. .7. .3. .4. .6
..5. .1. .3. .4. .6. .1. .2. .1. .1. .6. .4. .4. .6. .2. .4. .4
..5. .7. .7. .5. .3. .4. .0. .3. .3. .4. .1. .7. .6. .1. .3. .0
..7. .1. .6. .3. .2. .7. .4. .3. .5. .5. .7. .2. .5. .5. .1. .1
		

Crossrefs

Cf. A269537.

Formula

Empirical: a(n) = 31*a(n-1) -355*a(n-2) +1651*a(n-3) -870*a(n-4) -13188*a(n-5) +7883*a(n-6) +59449*a(n-7) +59366*a(n-8) +18088*a(n-9)

A269538 Number of length-4 0..n arrays with no repeated value differing from the previous repeated value by other than one.

Original entry on oeis.org

10, 64, 222, 568, 1210, 2280, 3934, 6352, 9738, 14320, 20350, 28104, 37882, 50008, 64830, 82720, 104074, 129312, 158878, 193240, 232890, 278344, 330142, 388848, 455050, 529360, 612414, 704872, 807418, 920760, 1045630, 1182784, 1333002
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2016

Keywords

Examples

			Some solutions for n=3:
..3. .0. .1. .3. .2. .3. .2. .1. .2. .1. .1. .0. .1. .1. .3. .3
..1. .3. .3. .3. .1. .0. .0. .3. .2. .2. .2. .2. .2. .1. .3. .1
..3. .2. .0. .2. .2. .1. .1. .1. .3. .3. .0. .2. .0. .3. .0. .3
..1. .3. .0. .0. .3. .0. .3. .0. .0. .3. .2. .1. .0. .0. .1. .2
		

Crossrefs

Row 4 of A269537.

Formula

Empirical: a(n) = n^4 + 4*n^3 + 3*n^2 + 2*n.
Conjectures from Colin Barker, Jan 24 2019: (Start)
G.f.: 2*x*(1 + x)*(5 + 2*x - x^2) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A269539 Number of length-5 0..n arrays with no repeated value differing from the previous repeated value by other than one.

Original entry on oeis.org

14, 164, 804, 2648, 6890, 15324, 30464, 55664, 95238, 154580, 240284, 360264, 523874, 742028, 1027320, 1394144, 1858814, 2439684, 3157268, 4034360, 5096154, 6370364, 7887344, 9680208, 11784950, 14240564, 17089164, 20376104, 24150098
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2016

Keywords

Examples

			Some solutions for n=3:
..1. .1. .2. .1. .0. .3. .2. .1. .2. .3. .1. .2. .3. .2. .0. .1
..2. .0. .1. .0. .1. .1. .1. .3. .3. .1. .3. .0. .3. .3. .2. .2
..0. .2. .2. .1. .0. .1. .0. .2. .1. .0. .1. .3. .0. .0. .3. .1
..1. .2. .3. .2. .3. .2. .0. .2. .1. .1. .3. .0. .3. .3. .2. .3
..0. .1. .2. .3. .3. .3. .1. .3. .0. .0. .0. .0. .2. .3. .3. .3
		

Crossrefs

Row 5 of A269537.

Formula

Empirical: a(n) = n^5 + 5*n^4 + 4*n^3 + 6*n^2 - 2*n.
Conjectures from Colin Barker, Jan 24 2019: (Start)
G.f.: 2*x*(7 + 40*x + 15*x^2 + 2*x^3 - 4*x^4) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A269540 Number of length-6 0..n arrays with no repeated value differing from the previous repeated value by other than one.

Original entry on oeis.org

22, 418, 2878, 12214, 38878, 102202, 234358, 485038, 926854, 1661458, 2826382, 4602598, 7222798, 10980394, 16239238, 23444062, 33131638, 45942658, 62634334, 84093718, 111351742, 145597978, 188196118, 240700174, 304871398, 382695922
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2016

Keywords

Examples

			Some solutions for n=3:
..0. .3. .3. .2. .3. .1. .1. .3. .1. .3. .0. .0. .1. .1. .0. .1
..2. .2. .2. .3. .3. .2. .3. .2. .2. .3. .1. .0. .1. .2. .1. .3
..2. .0. .0. .3. .0. .0. .1. .2. .0. .0. .3. .2. .2. .1. .2. .1
..3. .3. .2. .2. .3. .2. .1. .1. .0. .1. .2. .1. .3. .0. .2. .3
..1. .1. .1. .0. .2. .2. .3. .3. .1. .2. .3. .2. .0. .2. .0. .0
..3. .2. .2. .2. .0. .1. .2. .3. .2. .2. .2. .1. .2. .2. .1. .1
		

Crossrefs

Row 6 of A269537.

Formula

Empirical: a(n) = n^6 + 6*n^5 + 5*n^4 + 12*n^3 - 6*n^2 + 6*n - 2.
Conjectures from Colin Barker, Jan 24 2019: (Start)
G.f.: 2*x*(11 + 132*x + 207*x^2 + 38*x^3 - 21*x^4 - 6*x^5 - x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Showing 1-10 of 11 results. Next