cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269565 Array read by antidiagonals: T(n,m) is the number of (directed) Hamiltonian paths in K_n X K_m.

This page as a plain text file.
%I A269565 #48 Feb 16 2025 08:33:30
%S A269565 1,2,2,6,8,6,24,60,60,24,120,816,1512,816,120,720,17520,83520,83520,
%T A269565 17520,720,5040,550080,8869680,22394880,8869680,550080,5040,40320,
%U A269565 23839200,1621680480,13346910720,13346910720,1621680480,23839200,40320
%N A269565 Array read by antidiagonals: T(n,m) is the number of (directed) Hamiltonian paths in K_n X K_m.
%C A269565 Equivalently, the number of directed Hamiltonian paths on the n X m rook graph.
%C A269565 Conjecture: T(n,m) mod n!*m! = 0. - _Mikhail Kurkov_, Feb 08 2019
%C A269565 The above conjecture is true since a path defines an ordering on the rows and columns by the order in which they are first visited by the path. Every permutation of rows and columns therefore gives a different path. - _Andrew Howroyd_, Feb 08 2021
%H A269565 Andrew Howroyd, <a href="/A269565/b269565.txt">Table of n, a(n) for n = 1..96</a>
%H A269565 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HamiltonianPath.html">Hamiltonian Path</a>
%H A269565 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookGraph.html">Rook Graph</a>
%F A269565 From _Andrew Howroyd_, Oct 20 2019: (Start)
%F A269565 T(n,m) = T(m,n).
%F A269565 T(n,1) = n!. (End)
%e A269565 Array begins:
%e A269565 ===========================================================
%e A269565 n\m|    1      2        3            4               5
%e A269565 ---+-------------------------------------------------------
%e A269565 1  |    1,     2,       6,          24,            120, ...
%e A269565 2  |    2,     8,      60,         816,          17520, ...
%e A269565 3  |    6,    60,    1512,       83520,        8869680, ...
%e A269565 4  |   24,   816,   83520,    22394880,    13346910720, ...
%e A269565 5  |  120, 17520, 8869680, 13346910720, 50657369241600, ...
%e A269565 ...
%Y A269565 Main diagonal is A096970.
%Y A269565 Columns 2..3 are A096121, A329319.
%Y A269565 Cf. A286418, A269562.
%K A269565 nonn,tabl
%O A269565 1,2
%A A269565 _Andrew Howroyd_, Feb 29 2016