A269571 Numbers having binary fractility 1.
2, 3, 4, 5, 8, 11, 13, 16, 19, 29, 32, 37, 53, 59, 61, 64, 67, 83, 101, 107, 128, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 256, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 512, 523, 541, 547, 557, 563, 587, 613, 619
Offset: 1
Keywords
Examples
D(1/5) = (3,1,3,1,3,1,3,1,...) D(2/5) = (2,1,3,1,3,1,3,1,...) D(3/5) = (1,3,1,3,1,3,1,3,...) D(4/5) = (1,1,3,1,3,1,3,1,...). This shows that all m/5, for 0<m<5 are equivalent to 1/5, so that there is only 1 equivalence class.
Links
- Robert Price, Table of n, a(n) for n = 1..76
Programs
-
Mathematica
A269570[n_] := CountDistinct[With[{l = NestWhileList[ Rescale[#, {1/2^(Floor[-Log[2, #]] + 1), 1/2^(Floor[-Log[2, #]])}] &, #, UnsameQ, All]}, Min@l[[First@First@Position[l, Last@l] ;;]]] & /@ Range[1/n, 1 - 1/n, 1/n]] (* from Davin Park, Nov 19 2016 *) Select[Range[1000], A269570[#] == 1 &] (* Robert Price, Sep 20 2019 *)
Extensions
Corrected Offset by Robert Price, Sep 20 2019
a(37)-a(56) from Robert Price, Sep 20 2019
Comments