cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269572 Maximal period-length associated with binary fractility of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 5, 1, 6, 2, 3, 1, 4, 3, 9, 2, 4, 5, 7, 1, 10, 6, 9, 2, 14, 3, 4, 1, 5, 4, 7, 3, 18, 9, 8, 2, 10, 4, 7, 5, 7, 7, 14, 1, 11, 10, 6, 6, 26, 9, 12, 2, 9, 14, 29, 3, 30, 4, 5, 1, 6, 5, 33, 4, 11, 7, 21, 3, 6, 18, 11, 9, 15, 8, 22, 2, 27
Offset: 2

Views

Author

Clark Kimberling, Mar 01 2016

Keywords

Comments

For each x in (0,1], let 1/2^p(1) + 1/2^p(2) + ... be the infinite binary representation of x. Let d(1) = p(1) and d(i) = p(i) - p(i-1) for i >=2. Call (d(i)) the powerdifference sequence of x, and denote it by D(x). Call m/n and u/v equivalent if every period of D(m/n) is a period of D(u/v). Define the binary fractility of n to be the number of distinct equivalence classes of {m/n: 0 < m < n}. Each class is represented by a minimal period, and a(n) is the length of the longest such period.

Examples

			n        classes          a(n)
2         (1)              1
3         (2)              1
4         (1)              1
5         (1,3)            2
6         (1), (2)         1
7         (1,2), (3)       2
8         (1)              1
9         (1), (1,1,4)     3
10        (1), (1,3)       1
		

Crossrefs