This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269588 #43 Sep 09 2018 12:07:01 %S A269588 1,5,6,963,9867,65766,69714,6317056,90899553,169605719,4270981082, %T A269588 96528287587,465454256742,692153612536,182921919071841, %U A269588 655785969669834,650700037578750084,125631041500927357539,673774165549097456624,16719041449406813636569 %N A269588 Numbers n such that n^2 ends with the digits of n reversed (A004086(n)). %C A269588 a(29)>10^32 (if it exists) %H A269588 Robert Gerbicz, <a href="/A269588/b269588.txt">Table of n, a(n) for n = 1..28</a> %H A269588 IBM, <a href="https://www.research.ibm.com/haifa/ponderthis/challenges/March2016.html">"Ponder This" puzzle for March 2016</a> %e A269588 6317056^2 = 39905196507136 which ends with 6507136, so 6317056 is a term. %t A269588 Select[Range[10^7], Function[k, Take[IntegerDigits[#^2], -Length@ k] == Reverse@ k]@ IntegerDigits@ # &] (* _Michael De Vlieger_, Mar 04 2016 *) %o A269588 (PARI) isA269588(n)=dn = digits(n); rn = subst(Polrev(dn), x, 10); nbd = #dn; (n^2 - rn) % 10^nbd == 0; \\ _Michel Marcus_, Mar 01 2016 %o A269588 (PARI) \\ printA269588len(d) prints all terms of the sequence with d digits %o A269588 rev(n) = eval(concat(Vecrev(Str(n)))); %o A269588 { printA269588len(d) = my(l, u, n); l=ceil(d/2); u=floor(d/2); for(y=0, 10^l-1, n=rev(y^2 % 10^u)*10^l+y; if(#Str(n)==d && Mod(n, 10^d)^2==rev(n), print(n)); ); } %o A269588 \\ _Max Alekseyev_, Mar 07 2016 %Y A269588 Subsequence of A115761. %Y A269588 Cf. A003226, A004086. %K A269588 nonn,base %O A269588 1,2 %A A269588 _José Eduardo Gaboardi de Carvalho_, Mar 01 2016 %E A269588 a(18)-a(20) from _Max Alekseyev_, Mar 07 2016 %E A269588 a(21)-a(27) from _Robert Gerbicz_, Apr 03 2016 %E A269588 a(28) from Dieter Beckerle, Jun 09 2016