This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269595 #13 Oct 13 2017 00:21:22 %S A269595 1,2,1,4,3,5,6,2,6,7,8,10,1,3,4,9,10,12,1,2,4,8,9,13,15,16,2,3,8,10, %T A269595 12,13,14,15,18,5,7,10,11,14,15,17,19,20,21,22,1,4,5,6,7,9,13,16,20, %U A269595 22,23,24,25,28 %N A269595 Irregular triangle in which n-th row the gives quadratic residues prime(n)- m modulo prime(n), for m from {1, 2, ..., prime(n)-1}, in increasing order. %C A269595 The length of row 1 is 1 and of row n, n >= 2, is (prime(n)-1)/2, where prime(n) = A000040(n). %F A269595 For n = 1, prime(1) = 2: 1, and for odd primes n >= 2: the increasing values of m from {1, 2, ..., p-1} with the Legendre symbol (-m/prime(n)) = + 1. %F A269595 T(n, k) = prime(n) - A063987(n,(prime(n)-1)/2-k+1). k=1..(prime(n)-1)/2, for n >= 2, and T(1, 1) = 1. %e A269595 The irregular triangle T(n, k) begins (P(n) is here prime(n)): %e A269595 n, P(n)\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A269595 1, 2: 1 %e A269595 2, 3: 2 %e A269595 3, 5: 1 4 %e A269595 4, 7: 1 2 4 %e A269595 5, 11: 1 3 4 5 9 %e A269595 6: 13: 1 3 4 9 10 12 %e A269595 7, 17: 1 2 4 8 9 13 15 16 %e A269595 8, 19: 1 4 5 6 7 9 11 16 17 %e A269595 9, 23: 1 2 3 4 6 8 9 12 13 16 18 %e A269595 10, 29: 1 4 5 6 7 9 13 16 20 22 23 24 25 28 %e A269595 ... %t A269595 t = Table[Select[Range[Prime@ n - 1], JacobiSymbol[#, Prime@ n] == 1 &], {n, 10}]; Table[Prime@ n - t[[n, (Prime@ n - 1)/2 - k + 1]], {n, Length@ t}, {k, (Prime@ n - 1)/2}] /. {} -> 1 // Flatten (* _Michael De Vlieger_, Mar 31 2016, after _Jean-François Alcover_ at A063987 *) %Y A269595 Cf. A000040, A063987. %K A269595 nonn,tabf,easy %O A269595 1,2 %A A269595 _Wolfdieter Lang_, Mar 06 2016