cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269596 Irregular triangle giving in row n the smaller of the two roots x1 of x^2 + b modulo prime(n) from {0, 1, ..., prime(n)-1} corresponding to b from row n of A269595.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 4, 2, 5, 1, 5, 6, 3, 2, 4, 1, 4, 7, 8, 3, 5, 2, 6, 1, 6, 4, 7, 3, 8, 5, 9, 2, 1, 8, 4, 6, 9, 3, 10, 11, 2, 7, 5, 1, 12, 5, 13, 9, 14, 7, 4, 10, 3, 6, 8, 11, 2, 1
Offset: 1

Views

Author

Wolfdieter Lang, Apr 03 2016

Keywords

Comments

The length of row n >= 2 is (prime(n)-1)/2 = A005097(n-1), and for row n = 1 it is 1.
The other roots of x^2 + b modulo prime(n) are given in A269597.
See A269595 for the irregular triangle with the quadratic residues -b modulo prime(n) = A000040(n), for n >= 1. For n=1 (prime 2) there is a double root x1 = x2 = 1 of x^2 + 1 (mod 2).
Each row n >= 2 consists of a certain permutation of 1, 2, ..., (prime(n)-1)/2.
For a(n), n >= 2, see column x_1 of the table in the Wolfdieter Lang link.

Examples

			The irregular triangle T(n, k) begins (P(n) stands here for prime(n)):
n, P(n)\k 1  2  3  4  5  6  7  8  9 10 11 12 13 14
1,   2:   1
2,   3:   1
3,   5:   2  1
4,   7:   2  3  1
5,  11:   3  4  2  5  1
6:  13:   5  6  3  2  4  1
7,  17:   4  7  8  3  5  2  6  1
8,  19:   6  4  7  3  8  5  9  2  1
9,  23:   8  4  6  9  3 10 11  2  7  5  1
10, 29:  12  5 13  9 14  7  4 10  3  6  8 11  2  1
...
Row n=7 (prime 17) is the permutation (in cycle notation) (1,4,3,8)(2,7,6) of {1, 2, ..., 8}.
		

Crossrefs

Programs

  • Mathematica
    nn = 12; s = Table[Select[Range[Prime@ n - 1], JacobiSymbol[#, Prime@ n] == 1 &], {n, nn}]; t = Table[Prime@ n - s[[n, (Prime@ n - 1)/2 - k + 1]], {n, Length@ s}, {k, (Prime@ n - 1)/2}] /. {} -> {1};
    Prepend[Table[SelectFirst[Range@ #, Function[x, Mod[x^2 + t[[n, k]], #] == 0]] &@ Prime@ n, {n, 2, Length@ t}, {k, (Prime@ n - 1)/2}], {1}] // Flatten (* Michael De Vlieger, Apr 04 2016, Version 10 *)

Formula

T(n, k) gives the smaller zero of x^2 + A269595(n, k) == 0 (mod prime(n)), n >= 1, for k=1 if n=1 and k = 1, 2, ..., (prime(n)-1)/2 = A005097(n-1) for n >= 2. Representatives are taken from the complete residue class {0, 1 ,..., prime(n)-1}.
T(n, k) = prime(n) - A269597(n, k).