cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269597 Irregular triangle giving in row n the larger of the two roots of x^2 + b modulo prime(n) from {0, 1, ..., prime(n)-1} corresponding to b from row n of A269595.

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 6, 8, 7, 9, 6, 10, 8, 7, 10, 11, 9, 12, 13, 10, 9, 14, 12, 15, 11, 16, 13, 15, 12, 16, 11, 14, 10, 17, 18, 15, 19, 17, 14, 20, 13, 12, 21, 16, 18, 22, 17, 24, 16, 20, 15, 22, 25, 19, 26, 23, 21, 18, 27, 28
Offset: 1

Views

Author

Wolfdieter Lang, Apr 03 2016

Keywords

Comments

The length of row n >= 2 is (prime(n)-1)/2 = A005097(n-1), and for row n = 1 it is 1.
The other roots of x^2 + b modulo prime(n) from {0, 1, ..., prime(n)-1} are given in A269596.
See A269595 for the irregular triangle with the quadratic residues -b modulo prime(n) = A000040(n), for n >= 1. For n=1 (prime 2) there is a double root x1 = x2 = 1 of x^2 + 1 (mod 2).
Each row n >= 2 consists of a certain permutation of (prime(n)+1)/2, ..., prime(n) - 1.
For a(n), n >= 2, see column x_2 of the table in the Wolfdieter Lang link.

Examples

			The irregular triangle begins (P(n) stands here for prime(n)):
n, P(n)\k 1  2  3  4  5  6  7  8  9 10 11 12 13 14
1,   2:   1
2,   3:   2
3,   5:   3  4
4,   7:   5  4  6
5,  11:   8  7  9  6 10
6:  13:   8  7 10 11  9 12
7,  17:  13 10  9 14 12 15 11 16
8,  19:  13 15 12 16 11 14 10 17 18
9,  23:  15 19 17 14 20 13 12 21 16 18 22
10, 29:  17 24 16 20 15 22 25 19 26 23 21 18 27 28
...
Row n=7, prime 17 has the permutation (in cycle notation) (9,13,12,14,15,11) (10) (16) of {9, 10, ..., 16}.
		

Crossrefs

Programs

  • Mathematica
    nn = 12; s = Table[Select[Range[Prime@ n - 1], JacobiSymbol[#, Prime@ n] == 1 &], {n, nn}]; t = Table[Prime@ n - s[[n, (Prime@ n - 1)/2 - k + 1]], {n, Length@ s}, {k, (Prime@ n - 1)/2}] /. {} -> {1}; Prepend[Table[SelectFirst[Range[#, 1, -1], Function[x, Mod[x^2 + t[[n, k]], #] == 0]] &@ Prime@ n, {n, 2, Length@ t}, {k, (Prime@ n - 1)/2}], {1}] // Flatten (* Michael De Vlieger, Apr 04 2016, Version 10 *)

Formula

T(n, k) gives the larger zero of x^2 + A269595(n, k) == 0 (mod prime(n)), n >= 1, for k=1 if n=1 and k = 1, 2, ..., (prime(n)-1)/2 = A005097(n-1) for n >= 2. Only representatives from the smallest nonnegative complete residue class modulo prime(n) are considered.
T(n, k) = prime(n) - A269596(n, k).