A269599 Irregular triangle giving T(n, k) = -(2*A269597(n, k))^(prime(n) -2) modulo prime(n) for n >= 2.
2, 4, 3, 2, 6, 4, 2, 7, 3, 10, 6, 4, 12, 11, 10, 5, 7, 15, 11, 16, 3, 12, 13, 10, 9, 8, 12, 15, 16, 6, 2, 18, 5, 10, 13, 3, 2, 9, 4, 15, 22, 6, 5, 7, 12, 23, 3, 19, 21, 28, 27, 11, 16, 5, 17, 20, 4, 22, 15
Offset: 2
Examples
The irregular triangle T(n, k) begins (P(n) stands here for prime(n)): n, P(n)\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 2, 3: 2 3, 5: 4 3 4, 7: 2 6 4 5, 11: 2 7 3 10 6 6: 13: 4 12 11 10 5 7 7, 17: 15 11 16 3 12 13 10 9 8, 19: 8 12 15 16 6 2 18 5 10 9, 23: 13 3 2 9 4 15 22 6 5 7 12 10, 29: 23 3 19 21 28 27 11 16 5 17 20 4 22 15 ... T(5, 3) = 3 because 2*A269597(5, 3)*3 + 1 = 2*9*3 + 1 = 55 == 0 mod 11, hence modp(55, 11) = 0, and 3 is the unique nonnegative solution <= 10 of 2*A269597(5, 3)*z + 1 == 0 (mod 11).
Links
Programs
-
Mathematica
nn = 12; s = Table[Select[Range[Prime@ n - 1], JacobiSymbol[#, Prime@ n] == 1 &], {n, nn}]; t = Table[Prime@ n - s[[n, (Prime@ n - 1)/2 - k + 1]], {n, Length@ s}, {k, (Prime@ n - 1)/2}] /. {} -> {1}; u = Prepend[Table[SelectFirst[Range[#, 1, -1], Function[x, Mod[x^2 + t[[n, k]], #] == 0]] &@ Prime@ n, {n, 2, Length@ t}, {k, (Prime@ n - 1)/2}], {1}]; Table[SelectFirst[Range@ #, Function[z, Mod[-(2 u[[n, k]] z + 1), #] == 0]] &@ Prime@ n, {n, 2, Length@ u}, {k, (Prime@ n - 1)/2}] // Flatten (* Michael De Vlieger, Apr 04 2016, Version 10 *)
Formula
T(n, k) = modp( -(2*A269597(n, k))^(prime(n) -2), prime(n)), for n >= 2 and k=1, 2, ...., (prime(n)-1)/2, with modp(a, p) giving the number a' from {0, 1, ..., p-1} with a' == a (mod p).
Comments