A269602 Number of length-n 0..4 arrays with no repeated value differing from the previous repeated value by one or less.
5, 25, 120, 572, 2692, 12570, 58280, 268704, 1233046, 5636046, 25675580, 116635916, 528551090, 2390183046, 10789164304, 48625122028, 218845692934, 983773248134, 4417701453060, 19819733378212, 88847987191058, 398004177820814
Offset: 1
Keywords
Examples
Some solutions for n=7: ..0. .1. .1. .4. .3. .2. .1. .2. .1. .2. .4. .4. .1. .3. .4. .1 ..1. .0. .4. .1. .1. .1. .4. .4. .1. .3. .2. .1. .4. .4. .1. .1 ..4. .0. .4. .0. .0. .0. .1. .1. .2. .0. .2. .4. .0. .3. .0. .2 ..4. .4. .2. .1. .0. .1. .1. .1. .3. .3. .4. .4. .1. .2. .4. .1 ..0. .4. .4. .3. .2. .0. .3. .2. .2. .1. .2. .2. .1. .2. .2. .3 ..1. .2. .3. .1. .3. .3. .4. .1. .0. .0. .4. .3. .2. .0. .1. .1 ..3. .4. .1. .0. .1. .4. .4. .3. .4. .3. .0. .2. .4. .3. .0. .4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A269606.
Formula
Empirical: a(n) = 13*a(n-1) - 49*a(n-2) - 5*a(n-3) + 292*a(n-4) - 70*a(n-5) - 658*a(n-6) - 344*a(n-7).
Empirical g.f.: x*(5 - 40*x + 40*x^2 + 262*x^3 - 199*x^4 - 748*x^5 - 362*x^6) / ((1 - 4*x)*(1 - 9*x + 13*x^2 + 57*x^3 - 64*x^4 - 186*x^5 - 86*x^6)). - Colin Barker, Jan 24 2019