A269603 Number of length-n 0..5 arrays with no repeated value differing from the previous repeated value by one or less.
6, 36, 210, 1220, 7030, 40288, 229754, 1304934, 7385898, 41679780, 234601902, 1317558578, 7385249086, 41325945826, 230904832646, 1288466651340, 7181415415962, 39985405920156, 222432351559566, 1236355637246456
Offset: 1
Keywords
Examples
Some solutions for n=6: ..4. .4. .1. .3. .0. .3. .5. .1. .1. .5. .5. .1. .3. .0. .2. .0 ..3. .5. .5. .2. .3. .1. .1. .3. .1. .5. .3. .2. .2. .0. .5. .3 ..4. .3. .3. .1. .3. .5. .2. .2. .3. .2. .4. .1. .5. .2. .4. .5 ..2. .2. .1. .3. .2. .1. .1. .0. .0. .5. .3. .4. .2. .3. .1. .0 ..3. .5. .2. .0. .1. .3. .4. .4. .3. .2. .1. .0. .2. .1. .4. .4 ..0. .1. .5. .3. .2. .3. .1. .4. .5. .2. .2. .2. .4. .3. .1. .4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Robert Israel, Maple-assisted proof for empirical recursion
Crossrefs
Column 5 of A269606.
Programs
-
Maple
T:= Matrix(42,42): for x from 0 to 5 do for v from 0 to 6 do i:= 1 + x + 6*v; for y in {$0..5} minus {x} do T[i,1+y+6*v]:= 1; od: if abs(x-v) > 1 or v=6 then T[i,1+x+6*x]:= 1 fi od od: u:= Vector([0$36,1$6]): v:= Vector(42,1): Tv[1]:= v: for n from 2 to 50 do Tv[n]:= T . Tv[n-1] od: seq(u^%T . Tv[n], n=1..50); # Robert Israel, Jan 24 2019
Formula
Empirical: a(n) = 17*a(n-1) - 91*a(n-2) + 83*a(n-3) + 542*a(n-4) - 550*a(n-5) - 1651*a(n-6) - 745*a(n-7).
Empirical g.f.: 2*x*(3 - 33*x + 72*x^2 + 214*x^3 - 420*x^4 - 922*x^5 - 393*x^6) / ((1 - 5*x)*(1 - 12*x + 31*x^2 + 72*x^3 - 182*x^4 - 360*x^5 - 149*x^6)). - Colin Barker, Jan 24 2019
Empirical recursion verified - see link. - Robert Israel, Jan 24 2019