cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269603 Number of length-n 0..5 arrays with no repeated value differing from the previous repeated value by one or less.

Original entry on oeis.org

6, 36, 210, 1220, 7030, 40288, 229754, 1304934, 7385898, 41679780, 234601902, 1317558578, 7385249086, 41325945826, 230904832646, 1288466651340, 7181415415962, 39985405920156, 222432351559566, 1236355637246456
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2016

Keywords

Examples

			Some solutions for n=6:
..4. .4. .1. .3. .0. .3. .5. .1. .1. .5. .5. .1. .3. .0. .2. .0
..3. .5. .5. .2. .3. .1. .1. .3. .1. .5. .3. .2. .2. .0. .5. .3
..4. .3. .3. .1. .3. .5. .2. .2. .3. .2. .4. .1. .5. .2. .4. .5
..2. .2. .1. .3. .2. .1. .1. .0. .0. .5. .3. .4. .2. .3. .1. .0
..3. .5. .2. .0. .1. .3. .4. .4. .3. .2. .1. .0. .2. .1. .4. .4
..0. .1. .5. .3. .2. .3. .1. .4. .5. .2. .2. .2. .4. .3. .1. .4
		

Crossrefs

Column 5 of A269606.

Programs

  • Maple
    T:= Matrix(42,42):
    for x from 0 to 5 do
      for v from 0 to 6 do
        i:= 1 + x + 6*v;
        for y in {$0..5} minus {x} do
          T[i,1+y+6*v]:= 1;
        od:
        if abs(x-v) > 1 or v=6 then T[i,1+x+6*x]:= 1 fi
    od od:
    u:= Vector([0$36,1$6]): v:= Vector(42,1):
    Tv[1]:= v:
    for n from 2 to 50 do Tv[n]:= T . Tv[n-1] od:
    seq(u^%T . Tv[n], n=1..50); # Robert Israel, Jan 24 2019

Formula

Empirical: a(n) = 17*a(n-1) - 91*a(n-2) + 83*a(n-3) + 542*a(n-4) - 550*a(n-5) - 1651*a(n-6) - 745*a(n-7).
Empirical g.f.: 2*x*(3 - 33*x + 72*x^2 + 214*x^3 - 420*x^4 - 922*x^5 - 393*x^6) / ((1 - 5*x)*(1 - 12*x + 31*x^2 + 72*x^3 - 182*x^4 - 360*x^5 - 149*x^6)). - Colin Barker, Jan 24 2019
Empirical recursion verified - see link. - Robert Israel, Jan 24 2019