A269604 Number of length-n 0..6 arrays with no repeated value differing from the previous repeated value by one or less.
7, 49, 336, 2298, 15630, 105892, 714874, 4811578, 32300252, 216337084, 1446056046, 9648789758, 64281141440, 427655897226, 2841661493142, 18861464959350, 125070420653458, 828618463551536, 5485481885293294, 36288577806336542
Offset: 1
Keywords
Examples
Some solutions for n=6: ..3. .2. .6. .1. .5. .1. .2. .5. .2. .6. .4. .0. .1. .5. .5. .4 ..6. .0. .3. .2. .0. .1. .3. .2. .3. .1. .3. .5. .4. .4. .4. .0 ..6. .1. .6. .3. .1. .4. .6. .4. .1. .2. .1. .0. .5. .0. .3. .3 ..2. .4. .4. .6. .4. .6. .2. .6. .3. .4. .3. .0. .3. .1. .6. .5 ..2. .3. .2. .2. .1. .4. .3. .1. .2. .1. .1. .1. .0. .5. .3. .3 ..5. .1. .0. .4. .2. .0. .4. .1. .1. .1. .4. .6. .6. .6. .0. .2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Robert Israel, Maple-assisted proof of empirical recursion
Crossrefs
Column 6 of A269606.
Programs
-
Maple
with(LinearAlgebra): T:= Matrix(56,56): for x from 0 to 6 do for v from 0 to 7 do i:= 1 + x + 7*v; for y in {$0..6} minus {x} do T[i,1+y+7*v]:= 1; od: if abs(x-v) > 1 or v=7 then T[i,1+x+7*x]:= 1 fi od od: u:= Vector([0$49,1$7]): v:= Vector(56,1): Tv[1]:= v: for n from 2 to 50 do Tv[n]:= T . Tv[n-1] od: seq(u^%T . Tv[n], n=1..50); # Robert Israel, Jan 24 2019
Formula
Empirical: a(n) = 26*a(n-1) - 243*a(n-2) + 833*a(n-3) + 567*a(n-4) - 7567*a(n-5) - 1006*a(n-6) + 27361*a(n-7) + 31306*a(n-8) + 9984*a(n-9).
Empirical g.f.: x*(7 - 133*x + 763*x^2 - 362*x^3 - 7256*x^4 + 3224*x^5 + 32851*x^6 + 34133*x^7 + 10511*x^8) / ((1 - 6*x)*(1 - 20*x + 123*x^2 - 95*x^3 - 1137*x^4 + 745*x^5 + 5476*x^6 + 5495*x^7 + 1664*x^8)). - Colin Barker, Jan 24 2019
Empirical recursion verified: see link. - Robert Israel, Jan 24 2019