This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269605 #7 Jan 24 2019 15:28:23 %S A269605 8,64,504,3962,31024,242226,1886252,14654952,113629480,879470154, %T A269605 6796127732,52443005888,404170590152,3111359345068,23927329547328, %U A269605 183840499514208,1411335451447128,10826702362761906,82998453154738884 %N A269605 Number of length-n 0..7 arrays with no repeated value differing from the previous repeated value by one or less. %C A269605 Column 7 of A269606. %H A269605 R. H. Hardin, <a href="/A269605/b269605.txt">Table of n, a(n) for n = 1..210</a> %H A269605 Robert Israel, <a href="/A269605/a269605.pdf">Maple-assisted proof of empirical recursion</a> %F A269605 Empirical: a(n) = 31*a(n-1) -353*a(n-2) +1601*a(n-3) -435*a(n-4) -14505*a(n-5) +7118*a(n-6) +65542*a(n-7) +66279*a(n-8) +19971*a(n-9) %F A269605 Empirical formula verified: see link. - _Robert Israel_, Jan 24 2019 %e A269605 Some solutions for n=5 %e A269605 ..7. .4. .1. .3. .5. .2. .3. .4. .0. .1. .2. .3. .1. .5. .1. .0 %e A269605 ..0. .1. .2. .3. .6. .0. .6. .7. .2. .2. .4. .2. .0. .6. .5. .3 %e A269605 ..1. .1. .5. .7. .0. .6. .6. .5. .0. .6. .4. .1. .5. .0. .1. .5 %e A269605 ..7. .2. .2. .1. .6. .5. .0. .6. .0. .2. .2. .1. .6. .4. .5. .0 %e A269605 ..7. .0. .3. .4. .5. .0. .7. .6. .4. .6. .0. .2. .3. .2. .7. .0 %p A269605 with(LinearAlgebra): %p A269605 T:= Matrix(72,72): %p A269605 for x from 0 to 7 do %p A269605 for v from 0 to 8 do %p A269605 i:= 1 + x + 8*v; %p A269605 for y in {$0..7} minus {x} do %p A269605 T[i,1+y+8*v]:= 1; %p A269605 od: %p A269605 if abs(x-v) > 1 or v=8 then T[i,1+x+8*x]:= 1 fi %p A269605 od od: %p A269605 u:= Vector([0$64,1$8]): v:= Vector(72,1): %p A269605 Tv[1]:= v: %p A269605 for n from 2 to 50 do Tv[n]:= T . Tv[n-1] od: %p A269605 seq(u^%T . Tv[n], n=1..50); # _Robert Israel_, Jan 24 2019 %Y A269605 Cf. A269606. %K A269605 nonn %O A269605 1,1 %A A269605 _R. H. Hardin_, Mar 01 2016