This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269606 #4 Mar 01 2016 12:43:12 %S A269606 2,3,4,4,9,6,5,16,24,8,6,25,60,62,10,7,36,120,222,154,12,8,49,210,572, %T A269606 804,376,14,9,64,336,1220,2692,2878,902,16,10,81,504,2298,7030,12570, %U A269606 10192,2142,18,11,100,720,3962,15630,40288,58280,35812,5040,20,12,121 %N A269606 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by one or less. %C A269606 Table starts %C A269606 ..2.....3......4.......5........6.........7.........8..........9.........10 %C A269606 ..4.....9.....16......25.......36........49........64.........81........100 %C A269606 ..6....24.....60.....120......210.......336.......504........720........990 %C A269606 ..8....62....222.....572.....1220......2298......3962.......6392.......9792 %C A269606 .10...154....804....2692.....7030.....15630.....31024......56584......96642 %C A269606 .12...376...2878...12570....40288....105892....242226.....499798.....952180 %C A269606 .14...902..10192...58280...229754....714874...1886252....4405772....9366790 %C A269606 .16..2142..35812..268704..1304934...4811578..14654952...38768412...92013754 %C A269606 .18..5040.125012.1233046..7385898..32300252.113629480..340600002..902743646 %C A269606 .20.11786.434110.5636046.41679780.216337084.879470154.2988094770.8846649136 %H A269606 R. H. Hardin, <a href="/A269606/b269606.txt">Table of n, a(n) for n = 1..9999</a> %F A269606 Empirical for column k: %F A269606 k=1: a(n) = 2*a(n-1) -a(n-2) %F A269606 k=2: a(n) = 5*a(n-1) -5*a(n-2) -8*a(n-3) +12*a(n-4) %F A269606 k=3: a(n) = 7*a(n-1) -9*a(n-2) -23*a(n-3) +31*a(n-4) +33*a(n-5) %F A269606 k=4: [order 7] %F A269606 k=5: [order 7] %F A269606 k=6: [order 9] %F A269606 k=7: [order 9] %F A269606 Empirical for row n: %F A269606 n=1: a(n) = n + 1 %F A269606 n=2: a(n) = n^2 + 2*n + 1 %F A269606 n=3: a(n) = n^3 + 3*n^2 + 2*n %F A269606 n=4: a(n) = n^4 + 4*n^3 + 4*n^2 - n %F A269606 n=5: a(n) = n^5 + 5*n^4 + 7*n^3 - 4*n^2 + n %F A269606 n=6: a(n) = n^6 + 6*n^5 + 11*n^4 - 8*n^3 + n^2 + 3*n - 2 %F A269606 n=7: a(n) = n^7 + 7*n^6 + 16*n^5 - 12*n^4 - 5*n^3 + 18*n^2 - 15*n + 4 %e A269606 Some solutions for n=6 k=4 %e A269606 ..1. .0. .3. .0. .3. .2. .1. .1. .0. .3. .2. .3. .2. .1. .1. .2 %e A269606 ..3. .2. .2. .2. .0. .4. .2. .2. .3. .4. .0. .0. .0. .4. .1. .2 %e A269606 ..0. .0. .3. .4. .3. .2. .3. .3. .1. .4. .4. .3. .3. .3. .2. .3 %e A269606 ..4. .1. .0. .3. .1. .0. .3. .1. .0. .3. .1. .1. .3. .0. .1. .1 %e A269606 ..3. .3. .2. .4. .3. .4. .0. .0. .1. .4. .2. .3. .2. .3. .2. .0 %e A269606 ..1. .3. .1. .3. .0. .4. .1. .3. .1. .0. .3. .3. .0. .3. .0. .0 %Y A269606 Column 1 is A004275(n+1). %Y A269606 Column 3 is A269532. %Y A269606 Row 1 is A000027(n+1). %Y A269606 Row 2 is A000290(n+1). %Y A269606 Row 3 is A007531(n+2). %K A269606 nonn,tabl %O A269606 1,1 %A A269606 _R. H. Hardin_, Mar 01 2016