A269610 Number of length-7 0..n arrays with no repeated value differing from the previous repeated value by one or less.
14, 902, 10192, 58280, 229754, 714874, 1886252, 4405772, 9366790, 18476654, 34284584, 60459952, 102126002, 166254050, 262123204, 401850644, 600997502, 879255382, 1261218560, 1777246904, 2464424554, 3367619402, 4540648412
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1. .4. .2. .0. .2. .1. .4. .3. .1. .3. .4. .2. .4. .3. .3. .2 ..4. .1. .0. .3. .4. .3. .2. .0. .3. .4. .1. .1. .1. .1. .4. .3 ..0. .3. .3. .1. .1. .0. .4. .3. .1. .4. .4. .4. .0. .1. .2. .0 ..1. .2. .2. .2. .1. .4. .0. .0. .0. .3. .2. .1. .3. .0. .4. .2 ..1. .0. .0. .3. .3. .2. .1. .2. .2. .1. .2. .3. .4. .3. .3. .3 ..4. .1. .3. .2. .3. .3. .4. .0. .1. .1. .4. .3. .4. .0. .2. .1 ..4. .3. .1. .1. .2. .2. .0. .3. .1. .3. .1. .0. .3. .3. .1. .4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 7 of A269606.
Formula
Empirical: a(n) = n^7 + 7*n^6 + 16*n^5 - 12*n^4 - 5*n^3 + 18*n^2 - 15*n + 4.
Conjectures from Colin Barker, Jan 25 2019: (Start)
G.f.: 2*x*(7 + 395*x + 1684*x^2 + 608*x^3 - 321*x^4 + 143*x^5 + 6*x^6 - 2*x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)