cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269611 Decimal expansion of Sum_{n>=1} (sin(Pi/n))^2.

This page as a plain text file.
%I A269611 #13 Mar 27 2024 20:11:13
%S A269611 4,3,2,2,6,7,5,0,4,3,2,3,9,6,3,7,1,4,1,1,1,8,5,5,6,0,6,3,4,4,0,4,2,8,
%T A269611 0,9,2,0,7,8,5,2,1,7,3,5,5,0,5,3,1,9,5,5,5,2,5,6,9,9,9,6,5,9,9,2,3,0,
%U A269611 0,3,0,1,0,6,1,4,8,2,3,0,7,9,8,4,1,1,0,7,7,0,5,8,5,1,5,0,2,6,3,5,0,8,1,4,7
%N A269611 Decimal expansion of Sum_{n>=1} (sin(Pi/n))^2.
%F A269611 Equals (1/2) * Sum_{n>=1} (1 - cos(2*Pi/n)).
%F A269611 Equals Sum_{k>=1} (-1)^(k+1) * 2^(2*k-1) * Pi^(2*k) * Zeta(2*k) / (2*k)!, where Zeta is the Riemann zeta function.
%F A269611 Equals Sum_{k>=1} 2^(4*k-2) * Pi^(4*k) * B(2*k) / (2*k)!^2, where B(n) is the Bernoulli number A027641(n)/A027642(n).
%e A269611 4.32267504323963714111855606344042809207852173550531955525699965992300301...
%p A269611 evalf(Sum((sin(Pi/n))^2, n=1..infinity), 120);
%t A269611 RealDigits[NSum[Sin[Pi/n]^2, {n, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 10000, PrecisionGoal -> 120, Method -> {"NIntegrate", "MaxRecursion" -> 100}]][[1]]
%o A269611 (PARI) default(realprecision,120); sumpos(n=1, (sin(Pi/n))^2)
%Y A269611 Cf. A051762, A085365, A093721, A269574, A269720.
%K A269611 nonn,cons
%O A269611 1,1
%A A269611 _Vaclav Kotesovec_, Mar 01 2016