A269615 Number of length-n 0..4 arrays with no repeated value differing from the previous repeated value by other than plus two, zero or minus 1.
5, 25, 125, 612, 2956, 14125, 66925, 314935, 1473779, 6865098, 31856590, 147352985, 679742085, 3128486473, 14370696813, 65902020548, 301787376436, 1380297559417, 6306497302225, 28787967919963, 131309246498679, 598532215284482
Offset: 1
Keywords
Examples
Some solutions for n=7: ..3. .1. .0. .1. .4. .3. .4. .1. .1. .1. .1. .0. .2. .3. .2. .3 ..2. .4. .3. .1. .1. .3. .3. .0. .2. .2. .2. .1. .2. .0. .0. .4 ..0. .2. .1. .3. .2. .3. .2. .4. .0. .1. .3. .2. .3. .3. .2. .1 ..4. .4. .1. .4. .2. .4. .1. .4. .2. .2. .0. .1. .0. .3. .3. .0 ..0. .0. .1. .1. .2. .3. .1. .2. .1. .2. .4. .4. .1. .4. .0. .2 ..2. .1. .3. .3. .3. .2. .4. .1. .0. .0. .1. .1. .0. .2. .3. .1 ..2. .0. .4. .1. .0. .4. .2. .0. .1. .4. .2. .3. .1. .2. .3. .2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A269619.
Formula
Empirical: a(n) = 16*a(n-1) - 93*a(n-2) + 220*a(n-3) - 115*a(n-4) - 168*a(n-5) - 44*a(n-6) - 16*a(n-7).
Empirical g.f.: x*(5 - 55*x + 190*x^2 - 163*x^3 - 136*x^4 - 40*x^5 - 12*x^6) / ((1 - 4*x)*(1 - 12*x + 45*x^2 - 40*x^3 - 45*x^4 - 12*x^5 - 4*x^6)). - Colin Barker, Jan 25 2019