A269619 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by other than plus two, zero or minus 1.
2, 3, 4, 4, 9, 8, 5, 16, 27, 15, 6, 25, 64, 78, 28, 7, 36, 125, 249, 222, 51, 8, 49, 216, 612, 954, 624, 92, 9, 64, 343, 1275, 2956, 3611, 1740, 164, 10, 81, 512, 2370, 7440, 14125, 13544, 4824, 290, 11, 100, 729, 4053, 16218, 43013, 66925, 50442, 13320, 509, 12, 121
Offset: 1
Examples
Some solutions for n=6 k=4 ..1. .2. .0. .2. .1. .4. .3. .4. .2. .2. .0. .2. .2. .2. .2. .0 ..0. .3. .3. .1. .4. .0. .0. .0. .2. .1. .0. .1. .0. .2. .4. .3 ..4. .3. .2. .1. .1. .3. .0. .4. .1. .0. .4. .3. .1. .2. .4. .1 ..3. .3. .2. .2. .4. .2. .4. .0. .3. .3. .0. .3. .4. .3. .3. .1 ..0. .3. .1. .3. .0. .1. .3. .4. .1. .1. .2. .1. .4. .1. .4. .1 ..0. .3. .0. .4. .4. .1. .4. .2. .1. .0. .1. .0. .3. .4. .2. .2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3)
k=3: a(n) = 12*a(n-1) -51*a(n-2) +81*a(n-3) -3*a(n-4) -63*a(n-5) -24*a(n-6) -9*a(n-7)
k=4: [order 7]
k=5: [order 13]
k=6: [order 15]
k=7: [order 17]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = n^4 + 4*n^3 + 5*n^2 + 5*n
n=5: a(n) = n^5 + 5*n^4 + 7*n^3 + 12*n^2 + 3*n
n=6: a(n) = n^6 + 6*n^5 + 9*n^4 + 22*n^3 + 9*n^2 + 9*n - 7 for n>2
n=7: a(n) = n^7 + 7*n^6 + 11*n^5 + 35*n^4 + 18*n^3 + 36*n^2 - 19*n - 7 for n>2
Comments