A269622 Number of length-6 0..n arrays with no repeated value differing from the previous repeated value by other than plus two, zero or minus 1.
51, 624, 3611, 14125, 43013, 110099, 248143, 507521, 961625, 1712983, 2900099, 4705013, 7361581, 11164475, 16478903, 23751049, 33519233, 46425791, 63229675, 84819773, 112228949, 146648803, 189445151, 242174225, 306599593, 384709799
Offset: 1
Keywords
Examples
Some solutions for n=6: ..1. .2. .0. .5. .3. .1. .1. .5. .3. .0. .5. .4. .0. .3. .0. .2 ..6. .2. .2. .0. .6. .4. .0. .1. .3. .5. .2. .1. .6. .2. .5. .4 ..3. .3. .0. .5. .3. .5. .1. .4. .3. .5. .4. .0. .5. .1. .5. .4 ..3. .1. .2. .2. .1. .4. .2. .3. .3. .4. .3. .3. .4. .4. .5. .0 ..6. .1. .6. .4. .4. .3. .5. .4. .2. .5. .6. .3. .1. .1. .4. .2 ..4. .3. .0. .3. .3. .0. .5. .4. .1. .5. .3. .1. .4. .2. .4. .5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 6 of A269619.
Formula
Empirical: a(n) = n^6 + 6*n^5 + 9*n^4 + 22*n^3 + 9*n^2 + 9*n - 7 for n>2.
Conjectures from Colin Barker, Jan 25 2019: (Start)
G.f.: x*(51 + 267*x + 314*x^2 + 167*x^3 - 86*x^4 + 17*x^5 - 14*x^6 + 5*x^7 - x^8) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>9.
(End)