cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A269634 Number of length-n 0..n arrays with no repeated value differing from the previous repeated value by other than plus two or minus 1.

Original entry on oeis.org

2, 9, 60, 567, 6876, 101999, 1789528, 36254755, 833022466, 21405491763, 608269658548, 18940014187981, 641288235101528, 23458631849042641, 921973961506659528, 38744802632600163683, 1733648542829648188818
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Comments

Diagonal of A269640.

Examples

			Some solutions for n=6
..2. .3. .6. .2. .3. .0. .4. .2. .3. .1. .2. .0. .2. .5. .6. .4
..6. .1. .2. .5. .4. .2. .0. .5. .0. .5. .5. .4. .1. .6. .1. .6
..6. .4. .6. .4. .4. .5. .5. .6. .4. .1. .4. .4. .6. .4. .6. .1
..1. .2. .1. .0. .2. .5. .4. .0. .3. .2. .2. .6. .3. .1. .6. .4
..4. .6. .3. .0. .6. .4. .5. .2. .4. .5. .3. .6. .5. .2. .2. .3
..1. .0. .2. .3. .6. .3. .3. .6. .6. .4. .3. .5. .4. .1. .4. .6
		

Crossrefs

Cf. A269640.

A269635 Number of length-n 0..3 arrays with no repeated value differing from the previous repeated value by other than plus two or minus 1.

Original entry on oeis.org

4, 16, 60, 221, 796, 2828, 9928, 34537, 119236, 409098, 1396288, 4744671, 16062116, 54199810, 182382428, 612236251, 2050883956, 6857469364, 22892085300, 76311433969, 254067536796, 844941922160, 2807225267056, 9318543171653
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Examples

			Some solutions for n=9:
..2. .1. .2. .1. .2. .0. .2. .1. .1. .1. .1. .3. .3. .0. .0. .2
..0. .2. .3. .3. .2. .1. .0. .3. .3. .2. .3. .0. .1. .2. .2. .0
..3. .0. .0. .0. .1. .3. .0. .2. .2. .2. .0. .1. .3. .0. .1. .3
..1. .3. .2. .1. .0. .2. .1. .3. .1. .0. .3. .1. .0. .1. .3. .1
..0. .0. .2. .1. .3. .0. .0. .2. .3. .2. .1. .0. .3. .2. .0. .2
..1. .1. .0. .2. .2. .2. .2. .0. .2. .3. .2. .3. .0. .1. .3. .3
..3. .3. .3. .0. .3. .3. .2. .1. .0. .1. .0. .2. .0. .2. .2. .1
..0. .3. .2. .1. .1. .2. .1. .2. .1. .3. .2. .0. .2. .3. .0. .0
..0. .0. .0. .0. .2. .0. .3. .1. .0. .1. .2. .2. .0. .2. .3. .2
		

Crossrefs

Column 3 of A269640.

Formula

Empirical: a(n) = 9*a(n-1) - 21*a(n-2) - 19*a(n-3) + 93*a(n-4) + 27*a(n-5) - 133*a(n-6) - 87*a(n-7).
Empirical g.f.: x*(4 - 20*x + 93*x^3 - x^4 - 151*x^5 - 89*x^6) / ((1 - 3*x)*(1 - 6*x + 3*x^2 + 28*x^3 - 9*x^4 - 54*x^5 - 29*x^6)). - Colin Barker, Jan 25 2019

A269636 Number of length-n 0..4 arrays with no repeated value differing from the previous repeated value by other than plus two or minus 1.

Original entry on oeis.org

5, 25, 120, 567, 2637, 12125, 55225, 249600, 1120868, 5006144, 22255415, 98544130, 434827380, 1912861067, 8392454605, 36733957588, 160447861687, 699496998228, 3044446874255, 13230474539089, 57418454111103, 248881927670961
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Examples

			Some solutions for n=7:
..2. .0. .3. .0. .3. .2. .4. .3. .3. .3. .3. .3. .0. .0. .3. .0
..1. .3. .2. .4. .0. .1. .0. .1. .4. .0. .2. .1. .0. .1. .0. .4
..4. .4. .3. .2. .2. .1. .3. .0. .0. .1. .4. .4. .2. .3. .3. .0
..1. .1. .4. .2. .4. .3. .0. .4. .4. .2. .0. .4. .0. .4. .4. .4
..1. .2. .4. .4. .0. .2. .4. .0. .1. .1. .1. .2. .3. .3. .1. .4
..3. .3. .2. .2. .1. .4. .2. .0. .4. .0. .1. .3. .1. .3. .4. .2
..3. .2. .1. .4. .0. .1. .2. .3. .4. .0. .4. .3. .2. .1. .3. .4
		

Crossrefs

Column 4 of A269640.

Formula

Empirical: a(n) = 13*a(n-1) - 51*a(n-2) + 15*a(n-3) + 240*a(n-4) - 96*a(n-5) - 509*a(n-6) - 268*a(n-7).
Empirical g.f.: x*(5 - 40*x + 50*x^2 + 207*x^3 - 189*x^4 - 559*x^5 - 273*x^6) / ((1 - 4*x)*(1 - 9*x + 15*x^2 + 45*x^3 - 60*x^4 - 144*x^5 - 67*x^6)). - Colin Barker, Jan 25 2019

A269637 Number of length-n 0..5 arrays with no repeated value differing from the previous repeated value by other than plus two or minus 1.

Original entry on oeis.org

6, 36, 210, 1209, 6876, 38738, 216528, 1202353, 6639294, 36486190, 199677806, 1088813760, 5918190122, 32077034918, 173421804818, 935474530883, 5035906367464, 27059901888584, 145161762258568, 777537033208493
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Comments

Column 5 of A269640.

Examples

			Some solutions for n=6
..5. .1. .0. .3. .2. .3. .0. .2. .0. .3. .3. .2. .5. .2. .4. .2
..2. .4. .5. .4. .4. .0. .0. .3. .2. .2. .1. .0. .5. .0. .1. .3
..5. .4. .2. .5. .3. .2. .2. .4. .2. .4. .4. .5. .0. .2. .0. .0
..2. .5. .4. .4. .5. .3. .4. .3. .5. .5. .0. .3. .3. .5. .5. .3
..3. .4. .5. .5. .2. .5. .2. .0. .3. .5. .0. .4. .4. .4. .3. .2
..3. .3. .4. .3. .1. .3. .2. .1. .2. .0. .5. .2. .2. .3. .4. .5
		

Crossrefs

Cf. A269640.

Formula

Empirical: a(n) = 29*a(n-1) -330*a(n-2) +1730*a(n-3) -2815*a(n-4) -9981*a(n-5) +36088*a(n-6) +31192*a(n-7) -161403*a(n-8) -158561*a(n-9) +291970*a(n-10)

A269638 Number of length-n 0..6 arrays with no repeated value differing from the previous repeated value by other than plus two or minus 1.

Original entry on oeis.org

7, 49, 336, 2279, 15307, 101999, 675151, 4443665, 29104549, 189818232, 1233390075, 7987992466, 51583193592, 332235953819, 2134851774996, 13688959603199, 87607353750867, 559696980939927, 3570042462583517, 22738396298175560
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Comments

Column 6 of A269640.

Examples

			Some solutions for n=6
..0. .2. .6. .5. .2. .6. .6. .3. .1. .3. .4. .6. .2. .2. .0. .4
..3. .5. .0. .4. .0. .0. .0. .6. .3. .5. .0. .0. .5. .4. .6. .6
..5. .1. .6. .6. .1. .2. .6. .0. .4. .1. .1. .5. .3. .6. .5. .5
..2. .0. .2. .0. .2. .1. .3. .2. .3. .0. .3. .4. .6. .6. .3. .1
..3. .2. .2. .1. .2. .4. .3. .3. .6. .5. .1. .1. .5. .5. .5. .4
..1. .3. .4. .1. .1. .4. .6. .6. .6. .6. .0. .4. .5. .2. .3. .1
		

Crossrefs

Cf. A269640.

Formula

Empirical: a(n) = 42*a(n-1) -735*a(n-2) +6748*a(n-3) -32319*a(n-4) +53130*a(n-5) +172660*a(n-6) -705975*a(n-7) -416955*a(n-8) +3381035*a(n-9) +2527266*a(n-10) -7375032*a(n-11) -13093923*a(n-12) -7922412*a(n-13) -1718604*a(n-14)

A269639 Number of length-n 0..7 arrays with no repeated value differing from the previous repeated value by other than plus two or minus 1.

Original entry on oeis.org

8, 64, 504, 3933, 30444, 234080, 1789528, 13613507, 103118640, 778158768, 5852649288, 43888314093, 328240366020, 2449045039552, 18233174801384, 135479775215950, 1004866303875264, 7440970750295140, 55016954785772120
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Comments

Column 7 of A269640.

Examples

			Some solutions for n=5
..1. .7. .0. .1. .0. .1. .7. .3. .2. .3. .6. .1. .6. .3. .1. .3
..5. .1. .3. .7. .7. .0. .6. .1. .0. .5. .5. .0. .4. .0. .0. .0
..7. .2. .7. .0. .4. .0. .7. .2. .6. .2. .3. .2. .2. .3. .5. .0
..5. .6. .6. .2. .5. .1. .3. .2. .3. .5. .5. .6. .3. .6. .2. .5
..1. .2. .4. .3. .4. .4. .6. .5. .5. .3. .2. .4. .4. .6. .5. .7
		

Crossrefs

Cf. A269640.

Formula

Empirical: a(n) = 56*a(n-1) -1344*a(n-2) +17752*a(n-3) -135716*a(n-4) +545496*a(n-5) -463786*a(n-6) -4675564*a(n-7) +12243456*a(n-8) +21822328*a(n-9) -72836660*a(n-10) -123804240*a(n-11) +151424498*a(n-12) +520495760*a(n-13) +515921322*a(n-14) +232811740*a(n-15) +41061559*a(n-16)

A269641 Number of length-4 0..n arrays with no repeated value differing from the previous repeated value by other than plus two or minus 1.

Original entry on oeis.org

9, 63, 221, 567, 1209, 2279, 3933, 6351, 9737, 14319, 20349, 28103, 37881, 50007, 64829, 82719, 104073, 129311, 158877, 193239, 232889, 278343, 330141, 388847, 455049, 529359, 612413, 704871, 807417, 920759, 1045629, 1182783, 1333001
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Examples

			Some solutions for n=3:
..3. .2. .1. .2. .0. .0. .3. .0. .1. .2. .1. .2. .3. .0. .3. .2
..1. .3. .2. .2. .3. .3. .2. .0. .0. .3. .0. .1. .1. .0. .0. .0
..3. .1. .0. .0. .0. .1. .0. .2. .0. .2. .0. .2. .3. .2. .1. .2
..3. .2. .0. .3. .0. .2. .1. .1. .2. .2. .3. .3. .1. .3. .0. .2
		

Crossrefs

Row 4 of A269640.

Formula

Empirical: a(n) = n^4 + 4*n^3 + 3*n^2 + 2*n - 1.
Conjectures from Colin Barker, Jan 25 2019: (Start)
G.f.: x*(3 - x)*(3 + 7*x + x^2 + x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A269642 Number of length-5 0..n arrays with no repeated value differing from the previous repeated value by other than plus two or minus 1.

Original entry on oeis.org

12, 159, 796, 2637, 6876, 15307, 30444, 55641, 95212, 154551, 240252, 360229, 523836, 741987, 1027276, 1394097, 1858764, 2439631, 3157212, 4034301, 5096092, 6370299, 7887276, 9680137, 11784876, 14240487, 17089084, 20376021, 24150012
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Examples

			Some solutions for n=3:
..1. .0. .0. .1. .1. .2. .0. .2. .0. .2. .1. .0. .3. .2. .0. .3
..3. .0. .0. .0. .2. .3. .1. .3. .1. .2. .1. .3. .2. .0. .2. .0
..1. .1. .1. .2. .2. .2. .2. .0. .3. .3. .0. .0. .0. .1. .0. .0
..0. .3. .2. .3. .1. .3. .3. .1. .1. .2. .0. .3. .3. .0. .0. .1
..3. .1. .2. .3. .0. .1. .1. .2. .2. .3. .2. .0. .0. .0. .1. .2
		

Crossrefs

Row 5 of A269640.

Formula

Empirical: a(n) = n^5 + 5*n^4 + 4*n^3 + 6*n^2 - 5*n + 1.
Conjectures from Colin Barker, Jan 25 2019: (Start)
G.f.: x*(12 + 87*x + 22*x^2 + 6*x^3 - 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A269643 Number of length-6 0..n arrays with no repeated value differing from the previous repeated value by other than plus two or minus 1.

Original entry on oeis.org

16, 396, 2828, 12125, 38738, 101999, 234080, 484673, 926390, 1660883, 2825684, 4601765, 7221818, 10979255, 16237928, 23442569, 33129950, 45940763, 62632220, 84091373, 111349154, 145595135, 188193008, 240696785, 304867718, 382691939
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Examples

			Some solutions for n=3:
..1. .2. .3. .0. .2. .3. .1. .2. .1. .0. .0. .0. .1. .0. .1. .2
..2. .2. .1. .3. .0. .1. .0. .0. .1. .1. .1. .3. .2. .2. .3. .1
..2. .0. .2. .3. .0. .3. .3. .3. .0. .1. .0. .0. .0. .0. .2. .2
..3. .3. .3. .1. .1. .0. .1. .0. .2. .2. .3. .0. .2. .1. .1. .3
..2. .1. .2. .3. .3. .1. .0. .1. .0. .3. .0. .1. .1. .1. .3. .2
..1. .3. .2. .2. .1. .2. .1. .0. .2. .1. .3. .3. .0. .2. .3. .1
		

Crossrefs

Row 6 of A269640.

Formula

Empirical: a(n) = n^6 + 6*n^5 + 5*n^4 + 12*n^3 - 12*n^2 + 9*n - 7 for n>2.
Conjectures from Colin Barker, Jan 25 2019: (Start)
G.f.: x*(16 + 284*x + 392*x^2 + 85*x^3 - 49*x^4 + 2*x^5 - 14*x^6 + 5*x^7 - x^8) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>9.
(End)

A269644 Number of length-7 0..n arrays with no repeated value differing from the previous repeated value by other than plus two or minus 1.

Original entry on oeis.org

20, 969, 9928, 55225, 216528, 675151, 1789528, 4200933, 8974480, 17780443, 33120936, 58606993, 99291088, 162060135, 256094008, 393394621, 589390608, 863622643, 1240514440, 1750234473, 2429653456, 3323402623, 4485037848
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Examples

			Some solutions for n=3:
..1. .3. .0. .2. .3. .1. .2. .3. .1. .0. .2. .1. .0. .0. .0. .0
..2. .3. .3. .0. .1. .3. .0. .1. .1. .3. .3. .1. .3. .1. .1. .2
..2. .0. .3. .1. .0. .2. .0. .3. .0. .2. .3. .2. .3. .0. .3. .3
..1. .3. .2. .1. .3. .3. .2. .0. .3. .0. .2. .1. .1. .1. .1. .3
..2. .2. .1. .0. .2. .1. .2. .1. .2. .3. .0. .0. .3. .0. .1. .0
..1. .2. .0. .2. .3. .3. .1. .0. .0. .0. .1. .0. .2. .1. .2. .2
..2. .1. .2. .1. .2. .2. .2. .1. .2. .3. .3. .1. .2. .3. .3. .1
		

Crossrefs

Row 7 of A269640.

Formula

Empirical: a(n) = n^7 + 7*n^6 + 6*n^5 + 20*n^4 - 22*n^3 + 28*n^2 - 37*n + 13 for n>2.
Conjectures from Colin Barker, Jan 25 2019: (Start)
G.f.: x*(20 + 809*x + 2736*x^2 + 1813*x^3 - 152*x^4 - 31*x^5 - 240*x^6 + 123*x^7 - 44*x^8 + 6*x^9) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>10.
(End)
Showing 1-10 of 10 results.