cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269650 Number of length-n 0..2 arrays with no adjacent pair x,x+1 repeated.

Original entry on oeis.org

3, 9, 27, 79, 225, 626, 1710, 4605, 12259, 32320, 84504, 219356, 565816, 1451349, 3704271, 9412153, 23818707, 60055275, 150913073, 378064818, 944442242, 2353140149, 5848794543, 14504575980, 35894673012, 88654500384, 218560230944
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Examples

			Some solutions for n=9:
..1. .2. .2. .0. .0. .2. .1. .2. .2. .2. .0. .0. .2. .1. .1. .0
..1. .1. .0. .0. .0. .0. .2. .1. .1. .2. .2. .2. .0. .1. .2. .0
..1. .2. .2. .0. .0. .1. .0. .0. .0. .1. .2. .2. .1. .1. .2. .0
..1. .1. .1. .0. .2. .0. .2. .1. .2. .2. .0. .2. .2. .1. .1. .1
..0. .1. .0. .2. .1. .0. .2. .1. .2. .0. .2. .2. .1. .2. .0. .1
..0. .0. .1. .0. .1. .2. .2. .2. .2. .2. .2. .0. .1. .2. .0. .1
..2. .2. .2. .2. .2. .0. .2. .2. .1. .2. .2. .2. .0. .0. .2. .0
..0. .2. .0. .0. .2. .0. .1. .2. .2. .0. .2. .0. .0. .0. .2. .2
..2. .2. .0. .1. .0. .2. .1. .0. .2. .1. .2. .2. .0. .1. .2. .1
		

Crossrefs

Column 2 of A269656.

Programs

  • Maple
    T:= Matrix(12,12):
    for i from 1 to 12 do T[i,i]:= 1 od:
    T[1,6]:= 1: T[3,8]:= 1:
    T[5,11]:= 1: T[6,12]:= 1:
    for i from 1 to 4 do T[i,i+8]:= 1; T[i+4,i]:= 1; T[i+8,i]:= 1; T[i+8,i+4]:= 1 od:
    u:= <1,0,0,0,1,0,0,0,1,0,0,0>: v:= <1$12>:
    seq(u^%T . T^i . v, i = 0 .. 50); # Robert Israel, Apr 19 2023

Formula

Empirical: a(n) = 9*a(n-1) - 33*a(n-2) + 66*a(n-3) - 84*a(n-4) + 75*a(n-5) - 47*a(n-6) + 21*a(n-7) - 6*a(n-8) + a(n-9).
Empirical g.f.: x*(1 - 2*x + x^2 - x^3)*(3 - 12*x + 18*x^2 - 14*x^3 + 5*x^4 - x^5) / (1 - 3*x + 2*x^2 - x^3)^3. - Colin Barker, Jan 25 2019
Empirical recurrence verified (see link). - Robert Israel, Apr 19 2023