cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A269657 Number of length-4 0..n arrays with no adjacent pair x,x+1 repeated.

Original entry on oeis.org

1, 15, 79, 253, 621, 1291, 2395, 4089, 6553, 9991, 14631, 20725, 28549, 38403, 50611, 65521, 83505, 104959, 130303, 159981, 194461, 234235, 279819, 331753, 390601, 456951, 531415, 614629, 707253, 809971, 923491, 1048545, 1185889, 1336303
Offset: 0

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Comments

I.e., a(n) = # {x in {0..n}^4 | x[1] != x[0]+1 or x[2] != x[0] or x[3] != x[1]}. The only possibility to have an adjacent x,x+1 pair repeated in a length-4 array is to have the array (x,x+1,x,x+1), with 0 <= x <= n-1 given the restriction on the domain of coefficients. This implies a(n) = (n+1)^4 - n and previously conjectured formulas. - M. F. Hasler, Feb 29 2020

Examples

			From _M. F. Hasler_, Feb 29 2020: (Start)
For n=0, the only length-4 0..0 array is (0,0,0,0) and it satisfies the restriction, so a(0) = 1.
For n=1, there is only one 4-tuple with coefficients in 0..1 which has a repeated pair (x,x+1), namely (0,1,0,1). Thus, a(1) = 2^4 - 1 = 15.
For n=2, there are two 4-tuples with coefficients in 0..2 which have a repeated pair (x,x+1), namely (0,1,0,1) and (1,2,1,2). Thus, a(1) = 3^4 - 2 = 79.
(End)
Some solutions for n=3 (length-4 arrays shown as columns):
  1  1  0  2  0  2  2  3  0  3  2  1  0  3  1  1
  1  0  0  1  3  2  0  1  2  3  2  1  2  0  0  2
  1  1  2  2  1  0  0  2  2  0  2  0  0  0  0  1
  3  3  0  1  0  0  1  2  2  1  3  3  2  2  0  3
		

Crossrefs

Row 4 of A269656.

Programs

  • Mathematica
    Denominator/@Flatten[Table[x/.Solve[m-Sqrt[-1/(1/(1/(1-x)-(m-1))-(m+1))]==0],{m,2,34}]] (* Ed Pegg Jr, Jan 14 2020 *)
  • PARI
    apply( {A269657(n)=(n+1)^4-n}, [0..44]) \\ M. F. Hasler, Feb 29 2020

Formula

Empirical: a(n) = n^4 + 4*n^3 + 6*n^2 + 3*n + 1.
Conjectures from Colin Barker, Jan 25 2019: (Start)
G.f.: (1 + 10*x + 14*x^2 - 2*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
a(n) = (n+1)^4 - n, cf. comment, confirming the above conjectured formulas. - M. F. Hasler, Feb 29 2020

Extensions

Extended to a(0) = 1 by M. F. Hasler, Feb 29 2020

A269658 Number of length-5 0..n arrays with no adjacent pair x,x+1 repeated.

Original entry on oeis.org

1, 26, 225, 988, 3065, 7686, 16681, 32600, 58833, 99730, 160721, 248436, 370825, 537278, 758745, 1047856, 1419041, 1888650, 2475073, 3198860, 4082841, 5152246, 6434825, 7960968, 9763825, 11879426, 14346801, 17208100, 20508713, 24297390
Offset: 0

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Comments

The repeated pair is of the form (x,x+1) with 0 <= x <= n-1. Together with its repetition it occupies all but one position of the length-5 array. There are three choices for this position (beginning, middle, end; cf. example for n=1) and n+1 choices for the element in this position. This makes n*3*(n+1) forbidden arrays out of the (n+1)^5 possible ones. - M. F. Hasler, Feb 29 2020

Examples

			From _M. F. Hasler_, Feb 29 2020: (Start)
For n=0, there is only one array of length 5 with coefficients in 0..0, (0,0,0,0,0), and it satisfies the requirement, so a(0) = 1.
For n=1, the six arrays of length 5 with coefficients in 0..1 which do not satisfy the requirement are {(0,1,0,1,x), (0,1,x,0,1), (x,0,1,0,1); 0 <= x <= 1}, so a(1) = 2^5 - 6 = 26.
(End)
Some solutions for n=3:
  2  3  1  0  0  3  3  0  0  0  0  3  2  3  2  2
  2  0  3  3  2  3  3  1  2  3  0  3  3  1  0  3
  1  0  2  1  1  1  3  2  3  2  3  2  0  1  2  0
  0  2  0  1  0  2  2  2  1  3  3  2  2  1  3  3
  2  3  0  0  0  1  1  3  1  0  1  0  1  1  1  1
		

Crossrefs

Row 5 of A269656.

Programs

Formula

Empirical: a(n) = n^5 + 5*n^4 + 10*n^3 + 7*n^2 + 2*n + 1.
Conjectures from Colin Barker, Jan 25 2019: (Start)
G.f.: (1 + 20*x + 84*x^2 + 8*x^3 + 7*x^4) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n >= 6.
(End)
a(n) = (n+1)^5 - 3*n*(n+1) = A000584(n+1) - A028896(n), cf. comment, which confirms the above conjectured formulas. - M. F. Hasler, Feb 29 2020

Extensions

Extended to a(0) = 1 by M. F. Hasler, Feb 29 2020

A269659 Number of length-6 0..n arrays with no adjacent pair x,x+1 repeated.

Original entry on oeis.org

42, 626, 3816, 15036, 45590, 115902, 259476, 527576, 994626, 1764330, 2976512, 4814676, 7514286, 11371766, 16754220, 24109872, 33979226, 47006946, 63954456, 85713260, 113318982, 147966126, 191023556, 244050696, 308814450, 387306842
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Examples

			Some solutions for n=3:
..1. .3. .3. .1. .2. .0. .1. .2. .2. .0. .3. .2. .2. .0. .2. .2
..1. .0. .3. .0. .2. .0. .1. .3. .2. .0. .2. .0. .1. .3. .1. .0
..1. .2. .0. .0. .2. .2. .2. .0. .0. .0. .0. .3. .0. .2. .0. .2
..2. .0. .1. .3. .2. .0. .3. .1. .2. .2. .1. .3. .0. .2. .2. .0
..1. .0. .2. .0. .0. .3. .0. .1. .0. .2. .0. .1. .1. .0. .1. .1
..3. .1. .2. .1. .2. .2. .0. .1. .3. .0. .2. .3. .2. .0. .2. .3
		

Crossrefs

Row 6 of A269656.

Formula

Empirical: a(n) = n^6 + 6*n^5 + 15*n^4 + 14*n^3 + 3*n^2 + 3*n.
Conjectures from Colin Barker, Jan 25 2019: (Start)
G.f.: 2*x*(21 + 166*x + 158*x^2 + 17*x^4 - 2*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A269660 Number of length-7 0..n arrays with no adjacent pair x,x+1 repeated.

Original entry on oeis.org

64, 1710, 14596, 73348, 269472, 803434, 2061940, 4725456, 9911008, 19355302, 35643204, 62486620, 105058816, 170389218, 267823732, 409555624, 611232000, 892640926, 1278484228, 1799241012, 2492126944, 3402154330, 4583298036
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Examples

			Some solutions for n=3:
..1. .1. .0. .0. .2. .0. .0. .2. .0. .1. .0. .1. .2. .0. .1. .2
..3. .1. .0. .1. .0. .3. .3. .0. .0. .0. .1. .2. .0. .3. .3. .2
..0. .0. .2. .2. .1. .1. .0. .1. .2. .2. .3. .3. .3. .3. .1. .2
..1. .3. .0. .0. .0. .3. .1. .0. .3. .3. .0. .1. .2. .0. .1. .1
..2. .0. .1. .0. .3. .2. .1. .2. .0. .2. .0. .0. .1. .0. .3. .3
..0. .2. .2. .2. .3. .0. .2. .2. .3. .2. .0. .0. .2. .3. .0. .3
..3. .3. .1. .2. .1. .3. .1. .1. .2. .2. .0. .2. .2. .3. .3. .2
		

Crossrefs

Row 7 of A269656.

Formula

Empirical: a(n) = n^7 + 7*n^6 + 21*n^5 + 25*n^4 + 5*n^3 + 2*n^2 + 11*n - 8.
Conjectures from Colin Barker, Jan 26 2019: (Start)
G.f.: 2*x*(32 + 599*x + 1354*x^2 + 438*x^3 + 48*x^4 + 71*x^5 - 26*x^6 + 4*x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

A269649 Number of length-n 0..n arrays with no adjacent pair x,x+1 repeated.

Original entry on oeis.org

2, 9, 64, 621, 7686, 115902, 2061940, 42277329, 981592964, 25455321375, 729233710320, 22870710513322, 779384544768952, 28676004488510379, 1132947222095403840, 47837636065465105365, 2149808857973618974752
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Comments

Diagonal of A269656.

Examples

			Some solutions for n=6
..6. .3. .1. .2. .4. .5. .2. .2. .4. .4. .6. .4. .4. .4. .0. .0
..0. .3. .6. .2. .4. .3. .4. .1. .4. .4. .4. .2. .4. .0. .3. .6
..5. .0. .0. .2. .5. .1. .1. .3. .3. .4. .4. .5. .4. .2. .6. .4
..3. .0. .5. .4. .6. .5. .2. .1. .2. .5. .5. .3. .0. .5. .3. .5
..5. .4. .3. .3. .3. .1. .0. .5. .0. .5. .0. .6. .4. .6. .5. .1
..0. .6. .6. .0. .0. .5. .1. .4. .2. .4. .5. .3. .0. .0. .5. .0
		

Crossrefs

Cf. A269656.

A269650 Number of length-n 0..2 arrays with no adjacent pair x,x+1 repeated.

Original entry on oeis.org

3, 9, 27, 79, 225, 626, 1710, 4605, 12259, 32320, 84504, 219356, 565816, 1451349, 3704271, 9412153, 23818707, 60055275, 150913073, 378064818, 944442242, 2353140149, 5848794543, 14504575980, 35894673012, 88654500384, 218560230944
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Examples

			Some solutions for n=9:
..1. .2. .2. .0. .0. .2. .1. .2. .2. .2. .0. .0. .2. .1. .1. .0
..1. .1. .0. .0. .0. .0. .2. .1. .1. .2. .2. .2. .0. .1. .2. .0
..1. .2. .2. .0. .0. .1. .0. .0. .0. .1. .2. .2. .1. .1. .2. .0
..1. .1. .1. .0. .2. .0. .2. .1. .2. .2. .0. .2. .2. .1. .1. .1
..0. .1. .0. .2. .1. .0. .2. .1. .2. .0. .2. .2. .1. .2. .0. .1
..0. .0. .1. .0. .1. .2. .2. .2. .2. .2. .2. .0. .1. .2. .0. .1
..2. .2. .2. .2. .2. .0. .2. .2. .1. .2. .2. .2. .0. .0. .2. .0
..0. .2. .0. .0. .2. .0. .1. .2. .2. .0. .2. .0. .0. .0. .2. .2
..2. .2. .0. .1. .0. .2. .1. .0. .2. .1. .2. .2. .0. .1. .2. .1
		

Crossrefs

Column 2 of A269656.

Programs

  • Maple
    T:= Matrix(12,12):
    for i from 1 to 12 do T[i,i]:= 1 od:
    T[1,6]:= 1: T[3,8]:= 1:
    T[5,11]:= 1: T[6,12]:= 1:
    for i from 1 to 4 do T[i,i+8]:= 1; T[i+4,i]:= 1; T[i+8,i]:= 1; T[i+8,i+4]:= 1 od:
    u:= <1,0,0,0,1,0,0,0,1,0,0,0>: v:= <1$12>:
    seq(u^%T . T^i . v, i = 0 .. 50); # Robert Israel, Apr 19 2023

Formula

Empirical: a(n) = 9*a(n-1) - 33*a(n-2) + 66*a(n-3) - 84*a(n-4) + 75*a(n-5) - 47*a(n-6) + 21*a(n-7) - 6*a(n-8) + a(n-9).
Empirical g.f.: x*(1 - 2*x + x^2 - x^3)*(3 - 12*x + 18*x^2 - 14*x^3 + 5*x^4 - x^5) / (1 - 3*x + 2*x^2 - x^3)^3. - Colin Barker, Jan 25 2019
Empirical recurrence verified (see link). - Robert Israel, Apr 19 2023

A269651 Number of length-n 0..3 arrays with no adjacent pair x,x+1 repeated.

Original entry on oeis.org

4, 16, 64, 253, 988, 3816, 14596, 55344, 208196, 777582, 2885120, 10640607, 39027196, 142415244, 517252820, 1870499543, 6736838192, 24172420350, 86428990624, 308016010824, 1094338584760, 3876828265788, 13696906252336
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Comments

Column 3 of A269656.

Examples

			Some solutions for n=8
..3. .0. .1. .1. .1. .1. .0. .1. .2. .2. .2. .2. .3. .3. .1. .3
..1. .2. .1. .2. .3. .3. .3. .0. .0. .2. .1. .0. .3. .1. .3. .3
..3. .2. .0. .3. .1. .2. .3. .3. .2. .2. .2. .1. .0. .1. .0. .1
..2. .3. .0. .0. .0. .0. .2. .1. .3. .1. .1. .2. .2. .1. .1. .0
..1. .0. .3. .2. .1. .3. .2. .3. .1. .0. .3. .0. .1. .3. .1. .0
..3. .1. .3. .0. .2. .1. .3. .3. .3. .1. .1. .2. .1. .1. .2. .0
..2. .3. .0. .0. .0. .0. .2. .2. .3. .1. .3. .2. .0. .2. .3. .1
..2. .3. .0. .3. .2. .0. .0. .1. .3. .3. .3. .0. .3. .3. .1. .0
		

Crossrefs

Cf. A269656.

Formula

Empirical: a(n) = 16*a(n-1) -108*a(n-2) +408*a(n-3) -986*a(n-4) +1704*a(n-5) -2312*a(n-6) +2560*a(n-7) -2355*a(n-8) +1832*a(n-9) -1208*a(n-10) +672*a(n-11) -314*a(n-12) +120*a(n-13) -36*a(n-14) +8*a(n-15) -a(n-16)

A269652 Number of length-n 0..4 arrays with no adjacent pair x,x+1 repeated.

Original entry on oeis.org

5, 25, 125, 621, 3065, 15036, 73348, 355921, 1718569, 8259567, 39522507, 188338770, 894017122, 4228223130, 19928007170, 93614937601, 438406639797, 2047055696994, 9531639358730, 44264054228691, 205038988521635, 947492030288164
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Comments

Column 4 of A269656.

Examples

			Some solutions for n=7
..4. .3. .4. .2. .1. .3. .1. .3. .1. .0. .0. .2. .3. .2. .4. .1
..0. .3. .4. .4. .1. .4. .3. .4. .1. .3. .3. .3. .3. .1. .4. .2
..4. .2. .0. .2. .2. .0. .4. .0. .4. .0. .0. .4. .0. .2. .2. .3
..2. .0. .3. .1. .2. .0. .4. .2. .1. .1. .3. .2. .0. .3. .4. .3
..4. .0. .0. .0. .1. .3. .4. .1. .3. .3. .0. .1. .3. .0. .4. .3
..1. .2. .1. .2. .3. .2. .2. .4. .1. .4. .2. .4. .1. .4. .0. .4
..4. .1. .3. .4. .2. .1. .0. .4. .4. .3. .4. .2. .3. .4. .2. .4
		

Crossrefs

Cf. A269656.

Formula

Empirical: a(n) = 25*a(n-1) -270*a(n-2) +1665*a(n-3) -6595*a(n-4) +18220*a(n-5) -38090*a(n-6) +64915*a(n-7) -94320*a(n-8) +119745*a(n-9) -134854*a(n-10) +136350*a(n-11) -124755*a(n-12) +103755*a(n-13) -78640*a(n-14) +54403*a(n-15) -34320*a(n-16) +19685*a(n-17) -10220*a(n-18) +4770*a(n-19) -1977*a(n-20) +715*a(n-21) -220*a(n-22) +55*a(n-23) -10*a(n-24) +a(n-25)

A269653 Number of length-n 0..5 arrays with no adjacent pair x,x+1 repeated.

Original entry on oeis.org

6, 36, 216, 1291, 7686, 45590, 269472, 1587450, 9321628, 54569340, 318513432, 1853885152, 10761305560, 62304937944, 359833051280, 2073213227007, 11917692236634, 68357220234784, 391252708773072, 2234836878469971
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Comments

Column 5 of A269656.

Examples

			Some solutions for n=6
..0. .1. .3. .4. .4. .2. .5. .4. .2. .1. .3. .5. .4. .4. .1. .5
..3. .5. .3. .3. .3. .0. .1. .4. .0. .3. .4. .1. .4. .0. .4. .1
..3. .2. .4. .2. .0. .4. .4. .0. .5. .3. .0. .2. .2. .3. .0. .4
..0. .5. .3. .0. .2. .1. .4. .4. .0. .2. .2. .1. .5. .5. .2. .0
..1. .2. .5. .5. .3. .1. .4. .1. .5. .2. .5. .4. .0. .3. .1. .4
..4. .5. .2. .4. .4. .0. .4. .1. .5. .5. .3. .1. .2. .3. .5. .1
		

Crossrefs

Cf. A269656.

Formula

Empirical: a(n) = 36*a(n-1) -570*a(n-2) +5244*a(n-3) -31353*a(n-4) +130248*a(n-5) -398332*a(n-6) +954000*a(n-7) -1897824*a(n-8) +3269288*a(n-9) -5011092*a(n-10) +6954336*a(n-11) -8842060*a(n-12) +10392360*a(n-13) -11368380*a(n-14) +11633264*a(n-15) -11177154*a(n-16) +10110960*a(n-17) -8629656*a(n-18) +6958872*a(n-19) -5305806*a(n-20) +3825752*a(n-21) -2608020*a(n-22) +1679472*a(n-23) -1020104*a(n-24) +583128*a(n-25) -312780*a(n-26) +156800*a(n-27) -73068*a(n-28) +31416*a(n-29) -12340*a(n-30) +4368*a(n-31) -1365*a(n-32) +364*a(n-33) -78*a(n-34) +12*a(n-35) -a(n-36)

A269654 Number of length-n 0..6 arrays with no adjacent pair x,x+1 repeated.

Original entry on oeis.org

7, 49, 343, 2395, 16681, 115902, 803434, 5556909, 38350583, 264117327, 1815254345, 12451509292, 85246693192, 582545874403, 3973788262533, 27059842131395, 183956317982661, 1248518868323747, 8460336000063413, 57241697970038501
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Comments

Column 6 of A269656.

Examples

			Some solutions for n=6
..5. .1. .1. .0. .3. .3. .2. .4. .4. .1. .5. .2. .0. .3. .4. .3
..4. .0. .1. .1. .5. .3. .5. .2. .2. .1. .3. .3. .1. .5. .3. .3
..2. .0. .2. .3. .1. .2. .1. .2. .2. .4. .0. .6. .6. .3. .1. .6
..5. .0. .2. .1. .5. .0. .1. .3. .1. .2. .4. .0. .3. .3. .3. .1
..3. .0. .2. .5. .4. .3. .1. .6. .2. .0. .0. .3. .0. .2. .0. .1
..5. .6. .2. .4. .0. .2. .1. .4. .4. .1. .2. .4. .4. .1. .6. .1
		

Crossrefs

Cf. A269656.

Formula

Empirical: a(n) = 49*a(n-1) -1071*a(n-2) +13804*a(n-3) -117159*a(n-4) +695709*a(n-5) -3021382*a(n-6) +10023853*a(n-7) -26667942*a(n-8) +59661994*a(n-9) -116448220*a(n-10) +203589267*a(n-11) -324797263*a(n-12) +479027591*a(n-13) -659300067*a(n-14) +852873532*a(n-15) -1042800234*a(n-16) +1210501656*a(n-17) -1338796662*a(n-18) +1414739998*a(n-19) -1431668679*a(n-20) +1390012356*a(n-21) -1296744764*a(n-22) +1163755845*a(n-23) -1005616962*a(n-24) +837248601*a(n-25) -671927508*a(n-26) +519927877*a(n-27) -387912963*a(n-28) +279014001*a(n-29) -193401978*a(n-30) +129119305*a(n-31) -82960080*a(n-32) +51242821*a(n-33) -30387210*a(n-34) +17270445*a(n-35) -9387672*a(n-36) +4867688*a(n-37) -2399859*a(n-38) +1120399*a(n-39) -492772*a(n-40) +202839*a(n-41) -77471*a(n-42) +27132*a(n-43) -8568*a(n-44) +2380*a(n-45) -560*a(n-46) +105*a(n-47) -14*a(n-48) +a(n-49)
Showing 1-10 of 11 results. Next