A269657 Number of length-4 0..n arrays with no adjacent pair x,x+1 repeated.
1, 15, 79, 253, 621, 1291, 2395, 4089, 6553, 9991, 14631, 20725, 28549, 38403, 50611, 65521, 83505, 104959, 130303, 159981, 194461, 234235, 279819, 331753, 390601, 456951, 531415, 614629, 707253, 809971, 923491, 1048545, 1185889, 1336303
Offset: 0
Keywords
Examples
From _M. F. Hasler_, Feb 29 2020: (Start) For n=0, the only length-4 0..0 array is (0,0,0,0) and it satisfies the restriction, so a(0) = 1. For n=1, there is only one 4-tuple with coefficients in 0..1 which has a repeated pair (x,x+1), namely (0,1,0,1). Thus, a(1) = 2^4 - 1 = 15. For n=2, there are two 4-tuples with coefficients in 0..2 which have a repeated pair (x,x+1), namely (0,1,0,1) and (1,2,1,2). Thus, a(1) = 3^4 - 2 = 79. (End) Some solutions for n=3 (length-4 arrays shown as columns): 1 1 0 2 0 2 2 3 0 3 2 1 0 3 1 1 1 0 0 1 3 2 0 1 2 3 2 1 2 0 0 2 1 1 2 2 1 0 0 2 2 0 2 0 0 0 0 1 3 3 0 1 0 0 1 2 2 1 3 3 2 2 0 3
Links
- R. H. Hardin, Table of n, a(n) for n = 0..210 (a(0) = 1 inserted by _M. F. Hasler_, Feb 29 2020).
- John Elias, Illustration of initial terms: chain-linked cubes
Crossrefs
Row 4 of A269656.
Programs
-
Mathematica
Denominator/@Flatten[Table[x/.Solve[m-Sqrt[-1/(1/(1/(1-x)-(m-1))-(m+1))]==0],{m,2,34}]] (* Ed Pegg Jr, Jan 14 2020 *)
-
PARI
apply( {A269657(n)=(n+1)^4-n}, [0..44]) \\ M. F. Hasler, Feb 29 2020
Formula
Empirical: a(n) = n^4 + 4*n^3 + 6*n^2 + 3*n + 1.
Conjectures from Colin Barker, Jan 25 2019: (Start)
G.f.: (1 + 10*x + 14*x^2 - 2*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
a(n) = (n+1)^4 - n, cf. comment, confirming the above conjectured formulas. - M. F. Hasler, Feb 29 2020
Extensions
Extended to a(0) = 1 by M. F. Hasler, Feb 29 2020
Comments