This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269694 #29 Sep 24 2023 08:35:48 %S A269694 1,1,3,15,165,3465,148995,12664575,2165642325,738484032825, %T A269694 504384594419475,688484971382583375,1880252456845835197125, %U A269694 10268058666835106011499625,112158004817839862963610403875 %N A269694 Product of first n nonzero Jacobsthal numbers (A001045). %C A269694 Inspired by A015013. %F A269694 a(n) = abs(A015013(n)). %F A269694 a(n) ~ c * 2^(n*(n+1)/2) / 3^n, where c = QPochhammer(-2, 1/4)*QPochhammer(1/4)/3 = 1.21072413030105918013617285610590504636804163112313764347615924554000... - _Vaclav Kotesovec_, Mar 04 2021, updated Jul 19 2021 %F A269694 Equivalently, c = QPochhammer(-1/2). - _Vaclav Kotesovec_, Sep 24 2023 %e A269694 a(4) = 15 because a(4) = 1*1*3*5 = 15. %t A269694 Table[Abs@QFactorial[n, -2], {n, 20}] (* _Vladimir Reshetnikov_, Sep 16 2016 *) %t A269694 FoldList[Times,LinearRecurrence[{1,2},{1,1},20]] (* _Harvey P. Dale_, Apr 22 2019 *) %t A269694 Table[(-1)^Floor[n/2] * QPochhammer[-2, 4, 1 + Floor[(n-1)/2]] * QPochhammer[4, 4, Floor[n/2]]/3^n, {n, 1, 20}] (* _Vaclav Kotesovec_, Mar 04 2021 *) %o A269694 (PARI) a001045(n) = (2^n - (-1)^n) / 3; %o A269694 a(n) = prod(i=1, n, a001045(i)); %Y A269694 Cf. A001045, A015013. %K A269694 nonn,easy %O A269694 1,3 %A A269694 _Altug Alkan_, Apr 05 2016