A269696 Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 6", based on the 5-celled von Neumann neighborhood.
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
Crossrefs
Cf. A269695.
Programs
-
Mathematica
rule=6; stages=300; ca=CellularAutomaton[{rule,{2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}},{{{1}},0},stages]; (* Start with single black cell *) on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *) Part[on,2^Range[0,Log[2,stages]]] (* Extract relevant terms *)
Formula
Conjectures from Colin Barker, Mar 08 2016: (Start)
a(n) = 5*4^(n-1) for n>0.
a(n) = 4*a(n-1) for n>1.
G.f.: (1+x) / (1-4*x).
(End)
Extensions
a(9)-a(15) from Lars Blomberg, Apr 12 2016
Comments