A269698 First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 6", based on the 5-celled von Neumann neighborhood.
4, -1, 16, -16, 16, -4, 64, -76, 16, -4, 64, -64, 64, -16, 256, -316, 16, -4, 64, -64, 64, -16, 256, -304, 64, -16, 256, -256, 256, -64, 1024, -1276, 16, -4, 64, -64, 64, -16, 256, -304, 64, -16, 256, -256, 256, -64, 1024, -1264, 64, -16, 256, -256, 256, -64
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- Robert Price, Table of n, a(n) for n = 0..299
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
Crossrefs
Cf. A269695.
Programs
-
Mathematica
rule=6; stages=300; ca=CellularAutomaton[{rule,{2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}},{{{1}},0},stages]; (* Start with single black cell *) on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *) Table[on[[i+1]]-on[[i]],{i,1,Length[on]-1}] (* Difference at each stage *)
Comments