This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269703 #37 Sep 08 2022 08:46:15 %S A269703 10,14,20,30,31,45,47,52,60,68,75,82,87,90,94,101,113,115,120,122,126, %T A269703 132,134,144,153,156,162,163,169,177,183,192,209,213,220,226,233,239, %U A269703 250,251,262,267,269,288,295,304,306,315,320,324,330,337,342,344,346 %N A269703 Numbers k such that prime(k) == 1 (mod 7). %C A269703 The asymptotic density of this sequence is 1/6 (by Dirichlet's theorem). - _Amiram Eldar_, Mar 01 2021 %F A269703 a(n) ~ 6*n. - _Charles R Greathouse IV_, Sep 20 2016 [Corrected by _Amiram Eldar_, Mar 01 2021] %e A269703 a(1) = 10 because prime(10) = 29 and 29 == 1 (mod 7). %t A269703 Select[Range[500], Mod[Prime[#], 7] == 1 &] %o A269703 (Magma) [n: n in [1..500] | NthPrime(n) mod 7 eq 1]; %o A269703 (PARI) lista(nn) = for(n=1, nn, if(Mod(prime(n),7)==1, print1(n, ", "))); \\ _Altug Alkan_, Mar 04 2016 %Y A269703 The associated primes are in A004619. %Y A269703 Sequences of numbers n such that prime(n) == 1 (mod k): A091178 (k=3,6), A080147 (k=4), A049511 (k=5,10), this sequence (k=7), A269704 (k=8), A269705 (k=9). %K A269703 nonn %O A269703 1,1 %A A269703 _Vincenzo Librandi_, Mar 04 2016