cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269720 Decimal expansion of Sum_{n>=1} (Pi/n - sin(Pi/n)).

Original entry on oeis.org

4, 0, 9, 6, 4, 3, 4, 8, 9, 1, 5, 0, 1, 7, 3, 9, 8, 3, 2, 2, 2, 0, 2, 3, 4, 5, 8, 8, 6, 2, 6, 0, 5, 5, 4, 9, 5, 9, 2, 8, 1, 4, 4, 1, 6, 5, 1, 1, 9, 1, 2, 0, 4, 7, 5, 6, 4, 4, 4, 8, 6, 6, 4, 0, 6, 3, 9, 7, 5, 1, 0, 4, 3, 5, 0, 6, 7, 8, 0, 7, 8, 1, 7, 0, 5, 8, 2, 2, 8, 1, 6, 9, 6, 0, 8, 5, 0, 4, 4, 9, 8, 7, 4, 7, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 04 2016

Keywords

Examples

			4.096434891501739832220234588626055495928144165119120475644486640639751...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(Pi/n - sin(Pi/n), n=1..infinity), 120);
  • Mathematica
    RealDigits[NSum[Pi/n - Sin[Pi/n], {n, 1, Infinity}, WorkingPrecision->200, NSumTerms->10000, PrecisionGoal->120, Method->{"NIntegrate", "MaxRecursion"->100}]][[1]]
    (* Be aware that N[Sum[Pi/n - Sin[Pi/n], {n, 1, Infinity}], 120] give an incorrect numerical result, only 25 decimal places are correct! *)
  • PARI
    default(realprecision,120); sumpos(n=1, Pi/n - sin(Pi/n))

Formula

Equals Sum_{k>=2} (-1)^k * Pi^(2*k-1) * Zeta(2*k-1) / (2*k-1)!, where Zeta is the Riemann zeta function.