A269728 Let k be a number not a power of 2 (see A057716), and define r by 2^(r-1) < k < 2^r; a(n) is smallest prime of the form 2^r*m+1 such that the exponential sum S(sigma_{m,k}) avoids p.
5, 17, 41, 73, 97, 17, 17, 17, 17, 17, 17, 1601, 97, 97, 449, 257, 97, 97, 97, 97, 193, 257, 97, 97, 97, 449, 193, 1409, 193, 193, 193, 257, 193, 449, 769, 257, 193, 449, 257, 193, 193, 193, 193, 257, 449, 193, 193, 193, 257, 449, 257, 257, 257, 449, 641
Offset: 1
Keywords
Links
- Francis N. Castro and Luis A. Medina, Modular periodicity of exponential sums of symmetric Boolean functions and some of its consequences, arXiv:1603.00534 [math.NT], 2016.
Crossrefs
Cf. A057716.
Comments