This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269745 #19 May 05 2016 18:06:36 %S A269745 1,3,6,10,14,18,23,29,36,44,52,60,68,76 %N A269745 Maximal number of 1's in an n X n {0,1} Toeplitz matrix with property that no four 1's form a square with sides parallel to the edges of the matrix. %C A269745 Label the entries in the left edge and top row (reading from the bottom left to the top right) with the numbers 1 through 2n-1, and let S denote the subset of [1..2n-1] where the matrix contains 1's. Then the matrix has the no-subsquare property iff S contains no three-term arithmetic progression. %e A269745 n, a(n), example of optimal S: %e A269745 1, 1, [1] %e A269745 2, 3, [1, 2] %e A269745 3, 6, [1, 3, 4] %e A269745 4, 10, [1, 2, 4, 5] %e A269745 5, 14, [2, 3, 5, 6] %e A269745 6, 18, [3, 4, 6, 7] %e A269745 7, 23, [1, 5, 7, 8, 10] %e A269745 8, 29, [1, 2, 7, 8, 10, 11] %e A269745 9, 36, [1, 3, 4, 9, 10, 12, 13] %e A269745 10, 44, [1, 2, 4, 5, 10, 11, 13, 14] %e A269745 11, 52, [2, 3, 5, 6, 11, 12, 14, 15] %e A269745 12, 60, [3, 4, 6, 7, 12, 13, 15, 16] %e A269745 13, 68, [4, 5, 7, 8, 13, 14, 16, 17] %e A269745 14, 76, [5, 6, 8, 9, 14, 15, 17, 18] %e A269745 ... %e A269745 For example, the line 5, 14, [2, 3, 5, 6] corresponds to the Toeplitz matrix %e A269745 11000 %e A269745 01100 %e A269745 10110 %e A269745 11011 %e A269745 01101 %e A269745 and the value a(5) = 14. %Y A269745 This is a lower bound on A227133. %Y A269745 See A269746 for the analogous sequence for a triangular grid. %Y A269745 Cf. A003002. %K A269745 nonn,more %O A269745 1,2 %A A269745 _Warren D. Smith_ and _N. J. A. Sloane_, Mar 19 2016 %E A269745 a(14) from _N. J. A. Sloane_, May 05 2016