This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269748 #29 Jun 21 2025 15:12:48 %S A269748 68,71,77,83,87,97,101,107,111,125,131,145,149,155,159,173,183,193, %T A269748 203,207,217,227,231,245,265,269,275,279,289,293,323,327,341,347,365, %U A269748 371,385,395,399,413,423,433,447,457,461,467,491,515,519,529,533,543,553,567,581,591,605,611,625,629 %N A269748 a(n) = 2*p+61+2*gcd(p-1,3)+gcd(p-1,4), where p = prime(n). %H A269748 Vincenzo Librandi, <a href="/A269748/b269748.txt">Table of n, a(n) for n = 1..1000</a> %H A269748 Andrew Misseldine, <a href="http://arxiv.org/abs/1508.03757">Counting Schur Rings over Cyclic Groups</a>, arXiv preprint arXiv:1508.03757 [math.RA], 2015. %F A269748 a(n) = A232106(n) for n>=3. - _R. J. Mathar_, Jun 21 2025 %p A269748 f1:=proc(n) local p; p:=ithprime(n); %p A269748 2*p+61+2*gcd(p-1,3)+gcd(p-1,4); %p A269748 end; %t A269748 Table[2 Prime[n] + 61 + 2 GCD[Prime[n] - 1, 3] + GCD[Prime[n] -1, 4], {n, 60}] (* _Vincenzo Librandi_, Mar 26 2016 *) %o A269748 (Magma) [2*p+61 +2*Gcd(p-1,3)+Gcd(p-1,4): p in PrimesUpTo(700)]; // _Vincenzo Librandi_, Mar 26 2016 %K A269748 nonn %O A269748 1,1 %A A269748 _N. J. A. Sloane_, Mar 22 2016