cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269768 Decimal expansion of Sum_{n>=2} (-1)^n * zeta(n)/n!.

Original entry on oeis.org

6, 5, 9, 8, 1, 5, 2, 5, 4, 3, 4, 9, 9, 9, 9, 5, 1, 4, 8, 6, 3, 8, 4, 4, 1, 7, 4, 3, 5, 2, 9, 5, 8, 9, 9, 6, 0, 7, 7, 7, 7, 0, 0, 7, 4, 0, 8, 8, 8, 0, 8, 5, 4, 1, 3, 8, 4, 1, 2, 1, 3, 4, 9, 3, 2, 0, 6, 3, 3, 9, 8, 9, 0, 7, 5, 7, 3, 1, 6, 7, 8, 5, 1, 8, 5, 7, 6, 2, 4, 8, 3, 0, 0, 8, 7, 8, 6, 0, 9, 6, 0, 7, 5, 8, 0, 9
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 04 2016

Keywords

Examples

			0.659815254349999514863844174352958996077770074088808541384121349320633989...
		

Crossrefs

Cf. A093720.

Programs

  • Maple
    evalf(Sum(exp(-1/n)-1+1/n, n=1..infinity), 120);
  • Mathematica
    RealDigits[NSum[Exp[-1/n] - 1 + 1/n, {n, 1, Infinity}, WorkingPrecision -> 200, NSumTerms -> 10000, PrecisionGoal -> 120, Method -> {"NIntegrate", "MaxRecursion" -> 100}]][[1]]

Formula

Equals Sum_{k>=1} (exp(-1/k) - 1 + 1/k).
Comment from Velin Yanev, Mar 03 2023 (Start)
Apparently equals 1/2 - Integral_{x=0..oo} (coth(Pi/x)*(sin(x)/x^2 - 1/x) + 1/Pi) dx.
The proposed expression is difficult to evaluate to arbitrary precision.
Maple code: evalf[50](1/2 - Int(coth(Pi/x)*(sin(x)/x^2 - 1/x) + 1/Pi, x = 0 .. infinity));
Mathematica code: 1/2-NIntegrate[Coth[Pi/t] (Sin[t]/t^2-1/t)+1/Pi,{t,0,Infinity},WorkingPrecision->50,MinRecursion->7]
(End)