A269772 Number of length-n 0..4 arrays with every repeated value unequal to the previous repeated value plus one mod 4+1.
5, 25, 125, 620, 3060, 15040, 73680, 360000, 1755200, 8542720, 41519360, 201559040, 977556480, 4737433600, 22943846400, 111060664320, 537360220160, 2599052247040, 12567124705280, 60750607155200, 293614524825600
Offset: 1
Keywords
Examples
Some solutions for n=7: ..2. .2. .4. .4. .3. .2. .1. .4. .4. .1. .0. .3. .4. .4. .0. .3 ..4. .0. .2. .1. .1. .2. .2. .0. .1. .2. .4. .1. .4. .2. .3. .3 ..1. .1. .2. .3. .0. .0. .1. .2. .2. .0. .3. .0. .4. .4. .1. .1 ..3. .0. .2. .3. .3. .2. .3. .1. .1. .4. .4. .3. .4. .3. .1. .2 ..2. .1. .1. .3. .0. .2. .2. .4. .3. .3. .1. .4. .2. .2. .0. .4 ..3. .4. .4. .2. .2. .4. .0. .0. .2. .1. .0. .4. .4. .1. .4. .0 ..0. .1. .1. .2. .2. .0. .3. .3. .2. .0. .2. .1. .4. .3. .0. .4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A269776.
Formula
Empirical: a(n) = 8*a(n-1) - 12*a(n-2) - 16*a(n-3).
Empirical g.f.: 5*x*(1 - 3*x - 3*x^2) / ((1 - 4*x)*(1 - 4*x - 4*x^2)). - Colin Barker, Jan 29 2019