cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A269770 Number of length-n 0..n arrays with every repeated value unequal to the previous repeated value plus one mod n+1.

Original entry on oeis.org

2, 9, 64, 620, 7680, 115920, 2063880, 42342912, 983566800, 25515160000, 731128554024, 22934195241984, 781644611944014, 28761550510694400, 1136386416816000000, 47984229920230342656, 2156419762355192954760
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2016

Keywords

Comments

Diagonal of A269776.

Examples

			Some solutions for n=6
..1. .4. .5. .2. .2. .1. .1. .3. .1. .0. .0. .2. .3. .0. .6. .4
..2. .0. .2. .2. .2. .5. .1. .1. .1. .5. .4. .0. .4. .5. .2. .2
..1. .6. .1. .0. .5. .1. .5. .2. .2. .0. .1. .2. .3. .4. .0. .1
..1. .6. .5. .0. .6. .6. .3. .2. .6. .1. .6. .0. .6. .5. .2. .5
..5. .5. .2. .2. .0. .6. .4. .5. .3. .4. .4. .1. .0. .4. .1. .5
..4. .6. .6. .2. .0. .4. .3. .2. .3. .6. .1. .1. .2. .5. .4. .6
		

Crossrefs

Cf. A269776.

A269771 Number of length-n 0..3 arrays with every repeated value unequal to the previous repeated value plus one mod 3+1.

Original entry on oeis.org

4, 16, 64, 252, 984, 3816, 14724, 56592, 216864, 829116, 3164184, 12058632, 45904644, 174598416, 663634944, 2521077372, 9573268824, 36340434216, 137913296004, 523277751312, 1985122823904, 7529850771516, 28558867923864
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2016

Keywords

Examples

			Some solutions for n=8:
..1. .3. .2. .3. .3. .1. .2. .0. .2. .0. .3. .3. .3. .2. .3. .1
..0. .0. .1. .1. .2. .3. .0. .2. .3. .3. .3. .3. .0. .1. .0. .0
..1. .0. .3. .1. .3. .0. .3. .2. .0. .2. .0. .1. .1. .2. .1. .0
..2. .3. .3. .1. .3. .2. .1. .2. .2. .2. .1. .0. .0. .0. .0. .1
..3. .3. .3. .1. .1. .1. .2. .2. .0. .1. .1. .1. .3. .0. .1. .0
..1. .1. .1. .1. .1. .1. .3. .3. .2. .0. .0. .2. .0. .1. .1. .0
..3. .0. .0. .1. .3. .1. .0. .0. .2. .0. .3. .0. .0. .2. .1. .0
..0. .1. .2. .2. .2. .0. .3. .3. .3. .3. .2. .1. .0. .2. .2. .1
		

Crossrefs

Column 3 of A269776.

Formula

Empirical: a(n) = 6*a(n-1) - 6*a(n-2) - 9*a(n-3).
Empirical g.f.: 4*x*(1 - 2*x - 2*x^2) / ((1 - 3*x)*(1 - 3*x - 3*x^2)). - Colin Barker, Jan 28 2019

A269772 Number of length-n 0..4 arrays with every repeated value unequal to the previous repeated value plus one mod 4+1.

Original entry on oeis.org

5, 25, 125, 620, 3060, 15040, 73680, 360000, 1755200, 8542720, 41519360, 201559040, 977556480, 4737433600, 22943846400, 111060664320, 537360220160, 2599052247040, 12567124705280, 60750607155200, 293614524825600
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2016

Keywords

Examples

			Some solutions for n=7:
..2. .2. .4. .4. .3. .2. .1. .4. .4. .1. .0. .3. .4. .4. .0. .3
..4. .0. .2. .1. .1. .2. .2. .0. .1. .2. .4. .1. .4. .2. .3. .3
..1. .1. .2. .3. .0. .0. .1. .2. .2. .0. .3. .0. .4. .4. .1. .1
..3. .0. .2. .3. .3. .2. .3. .1. .1. .4. .4. .3. .4. .3. .1. .2
..2. .1. .1. .3. .0. .2. .2. .4. .3. .3. .1. .4. .2. .2. .0. .4
..3. .4. .4. .2. .2. .4. .0. .0. .2. .1. .0. .4. .4. .1. .4. .0
..0. .1. .1. .2. .2. .0. .3. .3. .2. .0. .2. .1. .4. .3. .0. .4
		

Crossrefs

Column 4 of A269776.

Formula

Empirical: a(n) = 8*a(n-1) - 12*a(n-2) - 16*a(n-3).
Empirical g.f.: 5*x*(1 - 3*x - 3*x^2) / ((1 - 4*x)*(1 - 4*x - 4*x^2)). - Colin Barker, Jan 29 2019

A269773 Number of length-n 0..5 arrays with every repeated value unequal to the previous repeated value plus one mod 5+1.

Original entry on oeis.org

6, 36, 216, 1290, 7680, 45600, 270150, 1597500, 9432000, 55616250, 327585000, 1927725000, 11335143750, 66607312500, 391177125000, 2296246406250, 13473738750000, 79033031250000, 463449377343750, 2716989679687500
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2016

Keywords

Examples

			Some solutions for n=6:
..0. .2. .2. .1. .4. .1. .4. .0. .4. .2. .0. .3. .4. .3. .5. .4
..4. .2. .3. .5. .4. .1. .2. .5. .1. .0. .1. .0. .0. .5. .4. .3
..5. .4. .0. .4. .3. .0. .5. .4. .1. .3. .1. .0. .2. .3. .5. .4
..3. .4. .5. .4. .3. .4. .1. .5. .0. .1. .2. .1. .3. .5. .5. .2
..1. .2. .1. .0. .2. .1. .5. .3. .1. .3. .3. .3. .0. .1. .3. .2
..4. .3. .2. .1. .3. .0. .0. .3. .4. .4. .3. .2. .2. .1. .4. .1
		

Crossrefs

Column 5 of A269776.

Formula

Empirical: a(n) = 10*a(n-1) - 20*a(n-2) - 25*a(n-3).
Empirical g.f.: 6*x*(1 - 4*x - 4*x^2) / ((1 - 5*x)*(1 - 5*x - 5*x^2)). - Colin Barker, Jan 29 2019

A269774 Number of length-n 0..6 arrays with every repeated value unequal to the previous repeated value plus one mod 6+1.

Original entry on oeis.org

7, 49, 343, 2394, 16674, 115920, 804636, 5577768, 38621016, 267152256, 1846396944, 12751839072, 88012679328, 607126689792, 4186073691072, 28850627143296, 198768754154880, 1369007582681088, 9426405790368000, 64890966854407680
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2016

Keywords

Examples

			Some solutions for n=6:
..5. .1. .2. .3. .0. .4. .4. .6. .0. .1. .1. .5. .5. .0. .2. .5
..2. .1. .0. .3. .4. .3. .0. .0. .5. .1. .2. .4. .2. .0. .3. .1
..2. .0. .6. .0. .1. .0. .4. .2. .5. .2. .4. .0. .6. .3. .0. .2
..2. .0. .5. .4. .2. .3. .5. .6. .2. .0. .0. .4. .5. .6. .1. .3
..4. .6. .1. .3. .6. .1. .1. .2. .0. .6. .0. .6. .0. .2. .3. .0
..2. .2. .6. .0. .2. .5. .6. .1. .0. .2. .2. .2. .0. .2. .5. .0
		

Crossrefs

Column 6 of A269776.

Formula

Empirical: a(n) = 12*a(n-1) - 30*a(n-2) - 36*a(n-3).
Empirical g.f.: 7*x*(1 - 5*x - 5*x^2) / ((1 - 6*x)*(1 - 6*x - 6*x^2)). - Colin Barker, Jan 29 2019

A269775 Number of length-n 0..7 arrays with every repeated value unequal to the previous repeated value plus one mod 7+1.

Original entry on oeis.org

8, 64, 512, 4088, 32592, 259504, 2063880, 16398144, 130175360, 1032602872, 8185566032, 64850011184, 513508842504, 4064330589760, 32155606323456, 254314670475768, 2010717722177360, 15893207240651440, 125593338184358408
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2016

Keywords

Examples

			Some solutions for n=5:
..4. .2. .0. .1. .2. .0. .2. .7. .4. .3. .1. .0. .7. .5. .5. .6
..3. .3. .0. .1. .2. .5. .0. .1. .7. .1. .0. .5. .1. .2. .1. .6
..4. .2. .6. .0. .6. .5. .0. .1. .1. .5. .3. .2. .5. .6. .7. .6
..3. .0. .1. .4. .4. .1. .7. .5. .3. .3. .3. .4. .3. .1. .1. .5
..5. .1. .5. .1. .0. .4. .5. .5. .0. .1. .3. .0. .1. .1. .2. .7
		

Crossrefs

Column 7 of A269776.

Formula

Empirical: a(n) = 14*a(n-1) - 42*a(n-2) -49*a(n-3).
Empirical g.f.: 8*x*(1 - 6*x - 6*x^2) / ((1 - 7*x)*(1 - 7*x - 7*x^2)). - Colin Barker, Jan 29 2019

A269777 Number of length-5 0..n arrays with every repeated value unequal to the previous repeated value plus one mod n+1.

Original entry on oeis.org

24, 222, 984, 3060, 7680, 16674, 32592, 58824, 99720, 160710, 248424, 370812, 537264, 758730, 1047840, 1419024, 1888632, 2475054, 3198840, 4082820, 5152224, 6434802, 7960944, 9763800, 11879400, 14346774, 17208072, 20508684, 24297360
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2016

Keywords

Examples

			Some solutions for n=3:
..1. .1. .0. .3. .1. .0. .1. .0. .1. .3. .0. .0. .0. .0. .1. .0
..0. .0. .1. .0. .3. .2. .0. .2. .0. .0. .0. .0. .0. .0. .1. .3
..2. .2. .1. .1. .0. .2. .2. .3. .3. .0. .1. .2. .0. .2. .2. .3
..0. .3. .0. .2. .3. .3. .1. .3. .0. .0. .2. .3. .2. .3. .1. .3
..3. .3. .3. .2. .1. .1. .2. .3. .3. .2. .2. .1. .0. .3. .0. .0
		

Crossrefs

Row 5 of A269776.

Formula

Empirical: a(n) = n^5 + 5*n^4 + 10*n^3 + 7*n^2 + n.
Conjectures from Colin Barker, Jan 29 2019: (Start)
G.f.: 6*x*(4 + 13*x + 2*x^2 + x^3) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A269778 Number of length-6 0..n arrays with every repeated value unequal to the previous repeated value plus one mod n+1.

Original entry on oeis.org

40, 624, 3816, 15040, 45600, 115920, 259504, 527616, 994680, 1764400, 2976600, 4814784, 7514416, 11371920, 16754400, 24110080, 33979464, 47007216, 63954760, 85713600, 113319360, 147966544, 191024016, 244051200, 308815000, 387307440
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2016

Keywords

Examples

			Some solutions for n=3:
..3. .1. .3. .1. .1. .3. .3. .1. .2. .2. .3. .3. .0. .2. .1. .2
..3. .0. .0. .3. .3. .3. .2. .2. .3. .2. .3. .0. .3. .0. .0. .3
..1. .3. .0. .3. .3. .3. .0. .3. .2. .1. .3. .3. .3. .0. .0. .1
..1. .2. .1. .0. .3. .3. .2. .3. .1. .1. .2. .0. .0. .0. .3. .0
..2. .1. .2. .2. .3. .0. .1. .0. .2. .2. .3. .1. .2. .0. .0. .3
..3. .2. .2. .2. .0. .1. .2. .3. .0. .1. .1. .1. .3. .3. .1. .0
		

Crossrefs

Row 6 of A269776.

Formula

Empirical: a(n) = n^6 + 6*n^5 + 15*n^4 + 14*n^3 + 4*n^2.
Conjectures from Colin Barker, Jan 29 2019: (Start)
G.f.: 8*x*(5 + 43*x + 36*x^2 + 4*x^3 + 2*x^4) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A269779 Number of length-7 0..n arrays with every repeated value unequal to the previous repeated value plus one mod n+1.

Original entry on oeis.org

66, 1740, 14724, 73680, 270150, 804636, 2063880, 4728384, 9915210, 19361100, 35650956, 62496720, 105071694, 170405340, 267843600, 409579776, 611261010, 892675404, 1278524820, 1799288400, 2492181846, 3402217500, 4583370264
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2016

Keywords

Examples

			Some solutions for n=3:
..0. .3. .0. .3. .1. .2. .0. .3. .0. .0. .2. .0. .0. .3. .3. .0
..0. .3. .0. .1. .2. .2. .1. .0. .1. .3. .2. .0. .2. .2. .0. .0
..0. .1. .2. .2. .1. .3. .2. .0. .3. .0. .2. .1. .2. .1. .1. .2
..0. .2. .1. .1. .0. .2. .0. .3. .1. .1. .1. .3. .2. .3. .1. .1
..2. .3. .2. .1. .0. .2. .0. .2. .0. .1. .1. .3. .0. .0. .0. .3
..2. .1. .0. .1. .0. .3. .1. .3. .1. .3. .2. .1. .1. .2. .1. .0
..2. .3. .2. .2. .2. .0. .2. .0. .1. .3. .0. .0. .1. .3. .1. .2
		

Crossrefs

Row 7 of A269776.

Formula

Empirical: a(n) = n^7 + 7*n^6 + 21*n^5 + 25*n^4 + 11*n^3 + n^2.
Conjectures from Colin Barker, Jan 29 2019: (Start)
G.f.: 6*x*(11 + 202*x + 442*x^2 + 152*x^3 + 27*x^4 + 6*x^5) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
Showing 1-9 of 9 results.