cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269794 G.f.: Product_{n>=1} 1/(1 - x^n/n^6) = Sum_{n>=0} a(n)*x^n/n!^6.

This page as a plain text file.
%I A269794 #9 Mar 06 2016 04:05:28
%S A269794 1,1,65,47449,194444416,3038449102976,141766192358448256,
%T A269794 16678817447073033946240,4372271021740050216976646144,
%U A269794 2323608852183697867526563204694016,2323611343146528421975097303187359268864,4116421685969107286571222251382158945547976704
%N A269794 G.f.: Product_{n>=1} 1/(1 - x^n/n^6)  =  Sum_{n>=0} a(n)*x^n/n!^6.
%H A269794 Vaclav Kotesovec, <a href="/A269794/b269794.txt">Table of n, a(n) for n = 0..100</a>
%F A269794 a(n) ~ c * n!^6, where c = Product_{k>=2} 1/(1-1/k^6) = 6*Pi^2 / cosh(sqrt(3)*Pi/2)^2 = 1.0176208398261870492814795459985... . - _Vaclav Kotesovec_, Mar 05 2016
%t A269794 Table[n!^6 * SeriesCoefficient[Product[1/(1-x^k/k^6), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
%o A269794 (PARI) {a(n)=n!^6*polcoeff(prod(k=1, n, 1/(1-x^k/k^6 +x*O(x^n))), n)}
%o A269794 for(n=0, 20, print1(a(n), ", "))
%Y A269794 Cf. A007841, A249588, A249593, A269791, A269793.
%K A269794 nonn
%O A269794 0,3
%A A269794 _Vaclav Kotesovec_, Mar 05 2016