A269807 Numbers having harmonic fractility A270000(n) = 4.
41, 71, 82, 109, 123, 141, 142, 157, 163, 164, 169, 175, 179, 181, 187, 191, 197, 211, 218, 229, 246, 251, 257, 265, 271, 282, 284, 293, 305, 311, 314, 323, 326, 327, 328, 338, 341, 350, 358, 362, 369, 371, 374, 382, 394, 395, 415, 422, 423, 433, 436, 445, 449
Offset: 1
Keywords
Examples
Nested interval sequences NI(k/m) for m = 41: NI(1/41) = (41, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...), NI(2/41) = (20, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, ...), NI(3/41) = (13, 3, 1, 1, 4, 2, 2, 20, 1, 1, 1, 2, 2, 1, 1, 1, 2, ...) ~ NI(2/41), NI(4/41) = (10, 1, 2, 1, 1, 8, 1, 1, 8, 1, 1, 8, 1, 1, 8, 1, 1, 8, 1, 1, ...), NI(5/41) = (6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...). Any further NI(k/41) is equivalent to one of the above, e.g., NI(40/11) = (1, 1, 1, 1, 1, 4, 2, 2, 20, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, ...) ~ NI(2/41). Thus, the number of equivalence classes is 4 (represented by 1/41, 2/41, 4/41 and 5/41), so that the fractility of 41 is 4.
Links
- Jack W Grahl, Table of n, a(n) for n = 1..138
Crossrefs
Programs
-
PARI
select(is_A269807(n)=A270000(n)==4, [1..450]) \\ M. F. Hasler, Nov 05 2018
Extensions
More terms from Jack W Grahl, Jun 27 2018
Edited by M. F. Hasler, Nov 05 2018
Comments