This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269809 #35 Nov 05 2018 21:18:20 %S A269809 77,95,131,145,154,190,203,209,231,247,262,275,285,290,299,308,329, %T A269809 377,380,393,406,418,431,435,437,443,462,494,524,529,539,545,550,559, %U A269809 570,580,595,598,609,616,627,658,685,689,693,705,737,741,754,760,767,786 %N A269809 Numbers having harmonic fractility A270000(n) = 6. %C A269809 In order to define (harmonic) fractility of an integer m > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) < x <= r(n), and let L(1) = r(n(1)) - r(n(1)+1). Let n(2) be the largest index n such that x <= r(n(1)+1) + L(1)*r(n), and let L(2) = (r(n(2)) - r(n(2)+1))*L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ...) =: NI(x), the r-nested interval sequence of x. %C A269809 For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually equal (up to an offset). For m > 1, the r-fractility of m is the number of equivalence classes of sequences NI(k/m) for 0 < k < m. Taking r = (1/1, 1/2, 1/3, 1/4, ... ) gives harmonic fractility. %C A269809 In the case of harmonic fractility, r(n) = 1/n, we have n(j+1) = floor(L(j)/(x -Sum_{i=1..j} L(i-1)/(n(i)+1))) for j >= 0, L(0) = 1. - _M. F. Hasler_, Nov 05 2018 %H A269809 Jack W Grahl, <a href="/A269809/b269809.txt">Table of n, a(n) for n = 1..73</a> %H A269809 Peter J. C. Moses, Clark Kimberling, <a href="http://math.colgate.edu/~integers/r46/r46.Abstract.html">Nested interval sequences of positive real numbers</a>, Integers 17 (2017), #A46. %e A269809 Nested interval sequences NI(k/m) for m = 77: %e A269809 The 6 equivalence classes are represented by %e A269809 NI(1/77) = (77, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...), %e A269809 NI(2/77) = (38, 2, 1, 1, 1, 1, 2, 3, 8, 2, 2, 1, 1, 1, 1, 2, 3, 8, 2, 2, 1, ...) (period length 9), %e A269809 NI(3/77) = (25, 3, 1, 1, 1, 5, 15, 1, 5, 15, 1, 5, 15, 1, 5, 15, 1, 5, 15, ...), %e A269809 NI(8/77) = (9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, ...), %e A269809 NI(10/77) = (7, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...), %e A269809 NI(14/77) = (5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...). %e A269809 For example, N(4/77) = (19, 1, 2, 1, 1, 1, 15, 1, 5, 15, 1, 5, ...) is equivalent to NI(3/77), and NI(6/77) = (12, 6, 1, 11, 1, 1, 1, ...) is equivalent to NI(1/77). - _M. F. Hasler_, Nov 05 2018 %o A269809 (PARI) select( is_A269809(n)=A270000(n)==6, [1..800]) \\ _M. F. Hasler_, Nov 05 2018 %Y A269809 Cf. A269804, A269805, A269806, A269807, A269808 (numbers with harmonic fractility 1, 2, 3, 4, 5, respectively); A270000 (harmonic fractility of n). %K A269809 nonn %O A269809 1,1 %A A269809 _Clark Kimberling_ and _Peter J. C. Moses_, Mar 05 2016 %E A269809 More terms from _Jack W Grahl_, Jun 28 2018 %E A269809 Edited by _M. F. Hasler_, Nov 05 2018