cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A331087 Starts of runs of 3 consecutive positive negaFibonacci-Niven numbers (A331085).

Original entry on oeis.org

4, 12, 86, 87, 88, 176, 230, 231, 232, 320, 464, 655, 1194, 1592, 1596, 1854, 1914, 2815, 3016, 3294, 4124, 4178, 4179, 4180, 4268, 4412, 5663, 5755, 8360, 9894, 10614, 10703, 10915, 10975, 13936, 14994, 15114, 15714, 17630, 18976, 19984, 20824, 21835, 23175, 23513
Offset: 1

Views

Author

Amiram Eldar, Jan 08 2020

Keywords

Comments

Numbers of the form F(6*k + 1) - 1, where F(m) is the m-th Fibonacci number, are terms.
Numbers of the form F(k) - 3, where k is congruent to {5, 11, 13, 19} mod 24 (A269819) are starts of runs of 5 consecutive negaFibonacci-Niven numbers.

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
    f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
    negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
    negFibQ[n_] := Divisible[n, negaFibTermsNum[n]];
    nConsec = 3; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec + 1; While[c < 55, If[And @@ neg, c++; AppendTo[seq, k - nConsec]];neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq

A331090 Positive numbers k such that -k, -(k + 1), and -(k + 2) are 3 consecutive negative negaFibonacci-Niven numbers (A331088).

Original entry on oeis.org

1, 2, 20, 54, 55, 56, 110, 376, 398, 974, 986, 1084, 1744, 2464, 2524, 3304, 3870, 5223, 5718, 6095, 6124, 6184, 6663, 6764, 6844, 7142, 7684, 9035, 9124, 10590, 11598, 11975, 12606, 13444, 13504, 14284, 14915, 17164, 17643, 17710, 17714, 17824, 17884, 18698, 18905, 19494, 23191, 24243, 24785, 25542, 26382, 27390, 29644, 34278, 35464
Offset: 1

Views

Author

Amiram Eldar, Jan 08 2020

Keywords

Comments

Numbers of the form F(6*k + 2) - 1 and F(6*k + 4) - 1, where F(m) is the m-th Fibonacci number, are terms.
If m is of the form F(k) - 1, where k > 2 is congruent to {2, 10} mod 24, then {-m, -(m + 1), -(m + 2), -(m + 3), -(m + 4)} are 5 consecutive negative negaFibonacci-Niven numbers.

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
    f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
    negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
    negFibQ[n_] := Divisible[n, negaFibTermsNum[-n]];
    nConsec = 3; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0;
    k = nConsec+1; While[c < 55, If[And @@ neg, c++; AppendTo[seq, k - nConsec]];neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq
Showing 1-2 of 2 results.