This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269843 #22 Feb 12 2025 11:11:19 %S A269843 4,0,9,8,7,4,8,8,5,0,8,8,2,3,6,4,7,4,4,7,8,7,8,1,2,1,2,3,3,7,9,5,5,2, %T A269843 7,7,8,9,6,3,5,8,0,1,3,2,5,4,9,4,5,4,6,9,8,2,6,3,3,6,3,9,8,8,2,2,6,4, %U A269843 8,2,3,6,1,7,3,9,6,5,9,6,5,1,5,4,6,0,8,4,5,4,4,9,9,6,2,0,2,8,1 %N A269843 Decimal expansion of Hardy-Littlewood constant C_5 = Product_{p prime > 5} 1/(1-1/p)^5 (1-5/p). %D A269843 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood Constants, p. 86. %H A269843 B. H. Mayoh, <a href="https://doi.org/10.1007/BF01939334">The 2nd Goldbach conjecture revisited</a>, BIT 8 (1968) 128-133 Table 5. %e A269843 0.4098748850882364744787812123379552778963580132549454698263363988... %t A269843 $MaxExtraPrecision = 800; digits = 99; terms = 800; P[n_] := PrimeZetaP[n] - 1/2^n - 1/3^n - 1/5^n; LR = Join[{0, 0}, LinearRecurrence[{6, -5}, {-20, -120}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First %o A269843 (PARI) prodeulerrat(1/(1-1/p)^5*(1-5/p), 1, 7) \\ _Amiram Eldar_, Mar 11 2021 %Y A269843 Cf. A005597, A065418, A065419, A001692. %K A269843 nonn,cons %O A269843 0,1 %A A269843 _Jean-François Alcover_, Apr 17 2016