cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269919 Triangle read by rows: T(n,g) is the number of rooted maps with n edges on an orientable surface of genus g.

This page as a plain text file.
%I A269919 #34 Jul 20 2018 03:44:59
%S A269919 1,2,9,1,54,20,378,307,21,2916,4280,966,24057,56914,27954,1485,208494,
%T A269919 736568,650076,113256,1876446,9370183,13271982,5008230,225225,
%U A269919 17399772,117822512,248371380,167808024,24635754,165297834,1469283166,4366441128
%N A269919 Triangle read by rows: T(n,g) is the number of rooted maps with n edges on an orientable surface of genus g.
%C A269919 Row n contains floor((n+2)/2) terms.
%C A269919 Equivalently, T(n,g) is the number of rooted bipartite quadrangulations with n faces of an orientable surface of genus g.
%H A269919 Gheorghe Coserea, <a href="/A269919/b269919.txt">Rows n = 0..200, flattened</a>
%H A269919 Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014.
%F A269919 (n+1)/6 * T(n, g) = (4*n-2)/3 * T(n-1, g) + (2*n-3)*(2*n-2)*(2*n-1)/12 * T(n-2, g-1) + 1/2 * Sum_{k=1..n-1} Sum_{i=0..g} (2*k-1) * (2*(n-k)-1) * T(k-1, i) * T(n-k-1, g-i) for all n >= 1 and 0 <= g <= n/2, with the initial conditions T(0,0) = 1 and T(n,g) = 0 for g < 0 or g > n/2.
%F A269919 For column g, as n goes to infinity we have T(n,g) ~ t(g) * n^(5*(g-1)/2) * 12^n, where t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)) and gamma is the Gamma function.
%e A269919 Triangle starts:
%e A269919 n\g    [0]          [1]          [2]          [3]          [4]
%e A269919 [0]    1;
%e A269919 [1]    2;
%e A269919 [2]    9,           1;
%e A269919 [3]    54,          20;
%e A269919 [4]    378,         307,         21;
%e A269919 [5]    2916,        4280,        966;
%e A269919 [6]    24057,       56914,       27954,       1485;
%e A269919 [7]    208494,      736568,      650076,      113256;
%e A269919 [8]    1876446,     9370183,     13271982,    5008230,     225225;
%e A269919 [9]    17399772,    117822512,   248371380,   167808024,   24635754;
%e A269919 [10]   ...
%t A269919 T[0, 0] = 1; T[n_, g_] /; g<0 || g>n/2 = 0; T[n_, g_] := T[n, g] = ((4n-2)/ 3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n-k)- 1) T[k-1, i] T[n-k-1, g-i], {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
%t A269919 Table[T[n, g], {n, 0, 10}, {g, 0, n/2}] // Flatten (* _Jean-François Alcover_, Jul 20 2018 *)
%o A269919 (PARI)
%o A269919 N = 9; gmax(n) = n\2;
%o A269919 Q = matrix(N+1, N+1);
%o A269919 Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
%o A269919 Qset(n, g, v) = { Q[n+1, g+1] = v };
%o A269919 Quadric({x=1}) = {
%o A269919   Qset(0, 0, x);
%o A269919   for (n = 1, N, for (g = 0, gmax(n),
%o A269919     my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
%o A269919        t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
%o A269919        t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
%o A269919        (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
%o A269919     Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
%o A269919 };
%o A269919 Quadric();
%o A269919 concat(vector(N+1, n, vector(1 + gmax(n-1), g, Qget(n-1, g-1))))
%Y A269919 Columns g=0-10 give: A000168, A006300, A006301, A104742, A215402, A238355, A238356, A238357, A238358, A238359, A238360.
%Y A269919 Cf. A269418, A269419.
%Y A269919 Same as A238396 except for the zeros.
%K A269919 nonn,tabf
%O A269919 0,2
%A A269919 _Gheorghe Coserea_, Mar 07 2016