This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269919 #34 Jul 20 2018 03:44:59 %S A269919 1,2,9,1,54,20,378,307,21,2916,4280,966,24057,56914,27954,1485,208494, %T A269919 736568,650076,113256,1876446,9370183,13271982,5008230,225225, %U A269919 17399772,117822512,248371380,167808024,24635754,165297834,1469283166,4366441128 %N A269919 Triangle read by rows: T(n,g) is the number of rooted maps with n edges on an orientable surface of genus g. %C A269919 Row n contains floor((n+2)/2) terms. %C A269919 Equivalently, T(n,g) is the number of rooted bipartite quadrangulations with n faces of an orientable surface of genus g. %H A269919 Gheorghe Coserea, <a href="/A269919/b269919.txt">Rows n = 0..200, flattened</a> %H A269919 Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014. %F A269919 (n+1)/6 * T(n, g) = (4*n-2)/3 * T(n-1, g) + (2*n-3)*(2*n-2)*(2*n-1)/12 * T(n-2, g-1) + 1/2 * Sum_{k=1..n-1} Sum_{i=0..g} (2*k-1) * (2*(n-k)-1) * T(k-1, i) * T(n-k-1, g-i) for all n >= 1 and 0 <= g <= n/2, with the initial conditions T(0,0) = 1 and T(n,g) = 0 for g < 0 or g > n/2. %F A269919 For column g, as n goes to infinity we have T(n,g) ~ t(g) * n^(5*(g-1)/2) * 12^n, where t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)) and gamma is the Gamma function. %e A269919 Triangle starts: %e A269919 n\g [0] [1] [2] [3] [4] %e A269919 [0] 1; %e A269919 [1] 2; %e A269919 [2] 9, 1; %e A269919 [3] 54, 20; %e A269919 [4] 378, 307, 21; %e A269919 [5] 2916, 4280, 966; %e A269919 [6] 24057, 56914, 27954, 1485; %e A269919 [7] 208494, 736568, 650076, 113256; %e A269919 [8] 1876446, 9370183, 13271982, 5008230, 225225; %e A269919 [9] 17399772, 117822512, 248371380, 167808024, 24635754; %e A269919 [10] ... %t A269919 T[0, 0] = 1; T[n_, g_] /; g<0 || g>n/2 = 0; T[n_, g_] := T[n, g] = ((4n-2)/ 3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n-k)- 1) T[k-1, i] T[n-k-1, g-i], {k, 1, n-1}, {i, 0, g}])/((n+1)/6); %t A269919 Table[T[n, g], {n, 0, 10}, {g, 0, n/2}] // Flatten (* _Jean-François Alcover_, Jul 20 2018 *) %o A269919 (PARI) %o A269919 N = 9; gmax(n) = n\2; %o A269919 Q = matrix(N+1, N+1); %o A269919 Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; %o A269919 Qset(n, g, v) = { Q[n+1, g+1] = v }; %o A269919 Quadric({x=1}) = { %o A269919 Qset(0, 0, x); %o A269919 for (n = 1, N, for (g = 0, gmax(n), %o A269919 my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), %o A269919 t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), %o A269919 t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, %o A269919 (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); %o A269919 Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); %o A269919 }; %o A269919 Quadric(); %o A269919 concat(vector(N+1, n, vector(1 + gmax(n-1), g, Qget(n-1, g-1)))) %Y A269919 Columns g=0-10 give: A000168, A006300, A006301, A104742, A215402, A238355, A238356, A238357, A238358, A238359, A238360. %Y A269919 Cf. A269418, A269419. %Y A269919 Same as A238396 except for the zeros. %K A269919 nonn,tabf %O A269919 0,2 %A A269919 _Gheorghe Coserea_, Mar 07 2016