This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269920 #40 Aug 10 2018 17:36:15 %S A269920 1,1,1,2,5,2,5,22,22,5,14,93,164,93,14,42,386,1030,1030,386,42,132, %T A269920 1586,5868,8885,5868,1586,132,429,6476,31388,65954,65954,31388,6476, %U A269920 429,1430,26333,160648,442610,614404,442610,160648,26333,1430 %N A269920 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 0. %C A269920 Row n contains n+1 terms. %H A269920 Gheorghe Coserea, <a href="/A269920/b269920.txt">Rows n = 0..200, flattened</a> %H A269920 Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014. %e A269920 Triangle starts: %e A269920 n\f [1] [2] [3] [4] [5] [6] [7] [8] %e A269920 [0] 1; %e A269920 [1] 1, 1; %e A269920 [2] 2, 5, 2; %e A269920 [3] 5, 22, 22, 5; %e A269920 [4] 14, 93, 164, 93, 14; %e A269920 [5] 42, 386, 1030, 1030, 386, 42; %e A269920 [6] 132, 1586, 5868, 8885, 5868, 1586, 132; %e A269920 [7] 429, 6476, 31388, 65954, 65954, 31388, 6476, 429; %e A269920 [8] ... %t A269920 Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0; %t A269920 Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); %t A269920 Table[Q[n, f, 0], {n, 0, 8}, {f, 1, n+1}] // Flatten (* _Jean-François Alcover_, Aug 10 2018 *) %o A269920 (PARI) %o A269920 N = 8; G = 0; gmax(n) = min(n\2, G); %o A269920 Q = matrix(N + 1, N + 1); %o A269920 Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; %o A269920 Qset(n, g, v) = { Q[n+1, g+1] = v }; %o A269920 Quadric({x=1}) = { %o A269920 Qset(0, 0, x); %o A269920 for (n = 1, length(Q)-1, for (g = 0, gmax(n), %o A269920 my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), %o A269920 t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), %o A269920 t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, %o A269920 (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); %o A269920 Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); %o A269920 }; %o A269920 Quadric('x); %o A269920 concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G)))) %Y A269920 Columns k=1-6 give: A000108, A000346, A000184, A000365, A000473, A000502. %Y A269920 Row sums give A000168 (column 0 of A269919). %Y A269920 Cf. A006294 (row maxima). %K A269920 nonn,tabl %O A269920 0,4 %A A269920 _Gheorghe Coserea_, Mar 14 2016