This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269923 #26 Aug 10 2018 17:36:29 %S A269923 1485,56628,56628,1169740,2668750,1169740,17454580,66449432,66449432, %T A269923 17454580,211083730,1171704435,1955808460,1171704435,211083730, %U A269923 2198596400,16476937840,40121261136,40121261136,16476937840,2198596400,20465052608,196924458720,647739636160 %N A269923 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 3. %C A269923 Row n contains n-5 terms. %H A269923 Gheorghe Coserea, <a href="/A269923/b269923.txt">Rows n = 6..206, flattened</a> %H A269923 Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014. %e A269923 Triangle starts: %e A269923 n\f [1] [2] [3] [4] [5] %e A269923 [6] 1485; %e A269923 [7] 56628, 56628; %e A269923 [8] 1169740, 2668750, 1169740; %e A269923 [9] 17454580, 66449432, 66449432, 17454580; %e A269923 [10] 211083730, 1171704435, 1955808460, 1171704435, 211083730; %e A269923 [11] ... %t A269923 Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0; %t A269923 Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); %t A269923 Table[Q[n, f, 3], {n, 6, 12}, {f, 1, n-5}] // Flatten (* _Jean-François Alcover_, Aug 10 2018 *) %o A269923 (PARI) %o A269923 N = 12; G = 3; gmax(n) = min(n\2, G); %o A269923 Q = matrix(N + 1, N + 1); %o A269923 Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; %o A269923 Qset(n, g, v) = { Q[n+1, g+1] = v }; %o A269923 Quadric({x=1}) = { %o A269923 Qset(0, 0, x); %o A269923 for (n = 1, length(Q)-1, for (g = 0, gmax(n), %o A269923 my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), %o A269923 t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), %o A269923 t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, %o A269923 (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); %o A269923 Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); %o A269923 }; %o A269923 Quadric('x); %o A269923 concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G)))) %Y A269923 Columns f=1-10 give: A288075 f=1, A288076 f=2, A288077 f=3, A288078 f=4, A288079 f=5, A288080 f=6, A288081 f=7, A288262 f=8, A288263 f=9, A288264 f=10. %Y A269923 Row sums give A104742 (column 3 of A269919). %Y A269923 Cf. A269921, A269922, A269924, A269925. %K A269923 nonn,tabl %O A269923 6,1 %A A269923 _Gheorghe Coserea_, Mar 15 2016